• Title/Summary/Keyword: 접촉식 3차원 측정기

Search Result 14, Processing Time 0.023 seconds

Current status and application of Photogrammetry (사진측정기의 동향 및 응용사례)

  • Choi, Jung-Su;Park, Eung-Sik;Kim, Hyung-Wan;Yoon, Yong-Sik
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.6 no.2
    • /
    • pp.80-89
    • /
    • 2008
  • Photogrammetry is a non-direct 3-dimensional coordinate measurement technique using 2-dimensional photographic images. For reconstruction 3-dimensional data from the 2-dimensional photos, photogrammetry uses the fundamental principle of triangulation. Digital photogrammetry solve for the camera location and coordinates simultaneously through the mapping, scaling and bundle processing in software processing. In this paper, several applications for photogrammetry measurement are introduced, such as 'photogrammetric measurement of the gravity deformation of a cassegrain type antenna', 'analysis of photogrammetry data from ISIM mockup', 'underwater photogrammetric verification of nuclear fuel assemblies', 'spacecraft optical bench measurement' and 'spacecraft ground support equipment measurement'.

  • PDF

A Study of Development for Contact CMM Probe using Three-Component Force Sensor (3 분력 힘 센서를 이용한 CMM 용 접촉식 프로브의 개발에 관한 연구)

  • 송광석;권기환;박재준;조남규
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.101-107
    • /
    • 2003
  • A new mechanical probe for 3-D feature measurement on coordinate measuring machines (CMMs) is presented. The probe is composed of the contact stylus and the three-component force sensor. With the stylus mounted on the force sensor, the probe can not only measure 3-D features, but also detect contact force acting on the stylus tip. Furthermore, the probing direction and the actual contact position can be determined by the relationship among three components of contact force to be detected. In this paper, transformation matrix representing the relationship between the external force acting on the stylus tip and the output voltages of measurement gauges is derived and calibrated. The prototype of probe is developed and its availability is investigated through the experimental setup for calibration test of the probe. A series of experimental results show that the proposed probe can be an effective means of improving the accuracy of touch probing on CMM.

The Study of reconstruction for 3D contact-measurement using TCP/IP communication (3차원 접촉식 측정기구의 네트웍을 통한 형상 복원에 관한 연구)

  • 고덕현;이순걸
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.3-7
    • /
    • 2000
  • The authors have realized reconstruction of 3D shape using contacting method with pins and TCP/IP communication. In this paper, the working principal of the mechanism is proposed and tested. A special sensor system is designed as 148 matrix form to measure 3D shape. When contact occurs between pin and the plate of the sensor matrix, the position information of pins is sent to computer and raised height data of the pin is obtained by counter which accumlates encoder signal. So, all datum which contain 3-dimensional coordinate, is transferred using TCP/IP communication. Finally, 3D shape is reconstructured by Web browser of remote computer. The measuring result shows that the proposed mechanism is reliable and promising as a remote measuring device through Internet.

  • PDF

Calibration/Compensation of Errors of the Touch Probe (접촉식 프로브의 오차교정 및 보정기술)

  • 박희재;이교일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2081-2087
    • /
    • 1994
  • Touch trigger probes are widely used for inspection purposed in the CMM(Coordinate meauring machine) or machine tool. The errors introduced by measurement probe are fairy systematic, thus can be calibrated and compensated properly. This paper presents a technique for the error calibration and compensation of the probe errors, which can be easily applicable to the manufacturers and users of the measurement probe. The probe coordinate system is defined for the probe error assessment, and a reference sphere ball is measured, and the probe errors are calibrated. The calibrated probe errors are represented in the 3D error map and 2D error map along probing direction. Detail algorithms for the error compensation are proposed.

Profile Error Measurement of a Turbine Blade Using a Contact Type 3D-Scanner (접촉식 3차원 형상스캐너를 이용한 터빈 블레이드의 형상 정밀도 측정)

  • Kang, Byung-Su;Kang, Jae-Gwan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.6
    • /
    • pp.76-81
    • /
    • 2006
  • In this paper, profile error measurement method of a turbine blade using 3D-scanner is developed. The method begins with scanning the upper and lower sides of the blade on which three small balls are attached, and constructs a solid measurement model by registering the two scanned surfaces. Airfoils are derived from the model at each interval by intersecting it with a plane, and arranged with design airfoils. The $2^2$ factorial design search method is engaged in arranging the two airfoils, from which the main blade parameters including the edge radius are computed. The developed measurement technique is applied to practical blade manufacturing and validates its effectiveness.

Touch-Trigger Probe Error Compensation in a Machining Center (공작기계용 접촉식 측정 프로브의 프로빙 오차 보상에 관한 연구)

  • Lee, Chan-Ho;Lee, Eung-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.661-667
    • /
    • 2011
  • Kinematic contact trigger probes are widely used for feature inspection and measurement on coordinate measurement machines (CMMs) and computer numerically controlled (CNC) machine tools. Recently, the probing accuracy has become one of the most important factors in the improvement of product quality, as the accuracy of such machining centers and measuring machines is increasing. Although high-accuracy probes using strain gauge can achieve this requirement, in this paper we study the universal economic kinematic contact probe to prove its probing mechanism and errors, and to try to make the best use of its performance. Stylus-ball-radius and center-alignment errors are proved, and the probing error mechanism on the 3D measuring coordinate is analyzed using numerical expressions. Macro algorithms are developed for the compensation of these errors, and actual tests and verifications are performed with a kinematic contact trigger probe and reference sphere on a CNC machine tool.

3D Modeling of Automobile Part Using Pattern Scanner and Efficiency Analysis (패턴스캐너를 이용한 자동차부품의 3차원모델링 및 효용성분석)

  • Han Seung-Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Effective three dimensional modeling becomes essential in a wide range of drawings, such as construction, machinery and design. In particular, it has been developed as the tool enabling reverse design. Three dimensional modeling requires rapidity, accuracy and tangibility. Data acquisition methods for modeling including contact type coordinate measurement machine, LASER scanner, pattern scanner and digital photogrammetry. In this study, we try to analyze modeling techniques as well as introduce three dimensional modeling using pattern scanner. In addition, this study conducts three dimensional modeling using OPTO-Top pattern scanner with distinguished accuracy and rapidity, and then compare efficiency with digital photogrammetry. And, this study attempts to form environment that enables to turn around models on web in three dimensional ways.

A Study on the Performance of Atomic Force Probe for Coordinate Measuring Machines (3차원 측정기를 위한 원자간력 프로브 성능 연구)

  • Jung, P.G.;Bae, G.H.;Hong, S.W.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.75-80
    • /
    • 2008
  • This paper presents an atomic force probe for triggering coordinate measuring machines(CMMs). A rigorous comparison is made between touch trigger probe and atomic force probe for CMMs. Typical CMMs(touch trigger probe based CMMs) often lead to some errors associated with object curvature and difference in triggering sensitivity. Their applicability is limited only to hard objects. The aim of this work is to develop a trigger sensor for CMMs using atomic force. In order to show the applicability of atomic force as a trigger sensor, a cylindrical shape is measured with a CMM and an atomic force microscope. Three different touch probe heads with different ball sizes are tested. The experiments show that smaller ball provides better results for curved objects. The experimental results also show that the performance of atomic force as a trigger sensor is about that of the smallest ball probe. In addition, experiments are also performed to measure soft objects. Finally, this paper suggests and verifies a trigger sensor using atomic force for CMMs.