• Title/Summary/Keyword: 접촉식센서

Search Result 243, Processing Time 0.03 seconds

Fabrication of thick film type catalytic combustible gas sensor using parallel resistance heat source (병열형가열부를 이용한 후막형 접촉연소식 가스센서 제조)

  • Park, Jun-Sik;Lee, Jae-Suk;Hong, Sung-Jei;Park, Hyo-Derk;Shin, Sang-Mo
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.23-29
    • /
    • 1996
  • Thick film type gas sensors with parallel Pt heaters were fabricated by screen printing process and investigated sensitivities for methane gas. The TR7905 was selected as Pt paste for heater by characterization the properties of TCRs and thick film microstructures. The average resistance of parallel Pt heaters was $1.8{\Omega}$, and the best TCR obtained was $3685\;ppm/^{\circ}C$. On the top of the Pt heaters, a sensing layer added with Pt and Pd as catalyst paste was screen printed and heat treated. The sensitivity of the sensor was 4.3mV/1000ppm for methane. The power consumption of the sensors was 2.12watts.

  • PDF

Possibility and Accuracy of Extracting Room Temperature Information from Mid-Infrared Sensor Satellite Images (중적외선 센서 위성 영상의 상온 온도 정보 추출 가능성 및 정확도)

  • Choi, SeokWeon;Seo, DooChun;Lee, DongHan
    • Journal of Space Technology and Applications
    • /
    • v.1 no.3
    • /
    • pp.356-363
    • /
    • 2021
  • It was common knowledge in textbooks that images acquired using mid-infrared ray were not suitable for measuring temperature near room temperature. But a recent satellite image using a mid-infrared sensor show the possibility that the result measured using the mid-infrared sensor can also measure the temperature near room temperature. In this paper, the possibility and accuracy of extraction room temperature information from satellite images with mid-infrared sensors are reviewed. The mid-infrared satellite image reviewed in this paper showed the temperature of room temperature well, and regarding the reliability as an absolute value of the measured temperature, the effect of the heat transfer amount due to the direct reflection of sunlight on the surface and the effect of the infrared absorption amount absorbed in the atmosphere can be seen as a relatively small or constant value. However, the problem of uncertainty in the radiation coefficient due to physical properties, which is the limit of the non-contact thermometer, remained a problem to be solved.

Characteristics of the Laser Displacement Sensor Using Optical Triangulation Method (광삼각법을 이용한 레이저 변위 센서의 특성 연구)

  • Park, Jong-Sung;Jeong, Kyu-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.40-50
    • /
    • 1999
  • Recently, a laser displacement sensor is widely used for the manufacturing automation. The sensor is generally composed of a diode laser and a light receiving device. The diode laser emits a laser beam and the receiving device detects the light reflected from the measured object. The object position is obtained based upon triangulation method. As a light receiving device, a PSD is usually utilized since its structure is very simple and rugged and has a high accuracy. Although the theoretical relationship for this sensor had been developed, the characteristics of the sensor have not been much experimentally studied. In this paper, several experimental results will presented. The measurement accuracy is affected by the surface conditions such as the reflectance characteristics, the angle of the object's surface and the laser intensity. In addition, it is found that the PSD and the signal processing circuit have nonlinearities and showed that those nonlinearities can be reduced by controlling the emitting laser intensity.

  • PDF

Precision in situ Measurement using Non-Contacting Capacitive Sensor with 4-Electrodes (비접촉식 4-전극형 전기용량 센서를 이용한 in situ 정밀측정)

  • Kim, Jae-Yeol;Lee, Lae-Duck;Park, Ki-Hyung;Ma, Sang-Dong;Yang, Dong-Jo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.33-38
    • /
    • 2002
  • To establish the national standard of capacitance, four main electrodes of the cross capacitor which were evaluated to linearity and roundness less the $\pm 1 \mu m$ respectively have to be adjusted symmetrically in an inner cylinder. Four LM shafts with diameter of 5 mm were installed between main electrodes of the cross capacitor, and the electrodes were adjusted, as the first step, by means of the measured capacitance. In the second step, the symmetrical adjustment up to $\pm 1.2\mu m$ was performed by using a ball sensor, ball-type movable sensor, non-contacting capacitive sensor and upper guard sensor which were developed in this project.

Study on a Real Time Quantitative Diagnostic Technique for Measuring CVD Precursors (CVD 공정의 전구체 잔존량 실시간 진단방법 연구)

  • Yun Ju-Young;Shin Yong-Hyoen;Chung Kwang-Hwa
    • Journal of the Korean Vacuum Society
    • /
    • v.14 no.3
    • /
    • pp.110-114
    • /
    • 2005
  • This study proposes an accurate method of monitoring precursor consumption in chemical vapor deposition (CVD) systems. Since precursor costs are significant, finding an efficient method to monitor precursor consumption is necessary One example is the use of non-contact and inexpensive ultrasonic sensors for determining the liquid level in a container. In this study, sensors based on ultrasonic techniques have been developed for monitoring the precursor consumption in a CVD system. Moreover, the prototype sensors developed in this study can be useful in the field of semiconductors.

Discharge Measurement Using Non-Contact Radar Surface Velocity Meter (비접촉식 레이더 표면 유속계를 이용한 유량 측정)

  • Kwon, Sung-Il;Kim, Yong-Jeon;Lee, Chan-Joo;Kim, Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1841-1844
    • /
    • 2009
  • 일반 하천에서의 유량측정 방법은 하천 조건에 따라 다르다. 전통적인 방법으로는 구조물에 의한 방법, 유속계 측정에 의한 유속-면적법, 부자에 의한 방법, 그리고 희석법 등이 있다. 그러나 이러한 방법들은 측정 위험성을 가지고 있다. 홍수시 발생되는 고유속과 심한 난류, 거대한 부유물질들은 하천 접근에 어려움을 가져오고, 측정 기기의 파손 위험성뿐만 아니라 인명피해까지 발생시킬 가능성이 있다. 최근 기존 방법들의 문제점을 해결하기 위하여 음파, 초음파, 레이더 등을 이용한 유량 측정 방법과 장비들이 개발되었다. 본 연구에서 사용한 레이더 유속계는 하천의 표면유속을 측정하는 비접촉식 센서로 홍수기 전 미리 유속 측정 단면 측량을 실시한다면 홍수시에도 비교적 신속하고 안전하게 유속을 측정할 수 있다. 따라서 본 연구에서는 레이더 유속계를 충청북도 괴산군 달천에 위치한 수전교에 설치하여 괴산댐 방류량 및 동시유량 측정 성과와 비교하였다. 2007년 7월부터 2008년 8월까지 $36m^3/s\;\sim\;821m^3/s$의 사상에서 총 10회 측정한 결과, 레이더 유속계를 사용하여 측정한 유량의 상대오차는 댐방류량 대비 -3.3% $\sim$ 27.5%로 나타나 평균11.8%의 상대오차를 보였다. 레이더 유속계 측정과 동시에 실시한 유속-면적법 측정, ADCP법 측정의 상대오차는 각각 평균 5.7%, 6.5%로 나타난 것과 비교한다면 다소 높은 오차를 보였다. 그러나 측정 시간의 경우 수위에 따라 다소 차이는 있지만 레이더 유속계를 이용하면 30분 정도의 시간이 소요되었으며, 유속면적법은 1시간 이상, ADCP법은 40분의 시간이 소요되었다. 이와 같이 레이더 유속계는 다른 방법에 비해 정확성은 다소 떨어지지만 측정 속도와 안정성 면에서는 우수하다고 판단된다. 문제점으로 지적되는 정확도 측면의 경우 레이더 유속계로 측정되는 표면유 속과 평균 유속 사이의 보정계수 문제를 보완한다면 보다 정확한 측정이 가능할 것으로 판단된다.

  • PDF

Contactless Biometric Using Thumb Image (엄지손가락 영상을 이용한 비접촉식 바이오인식)

  • Lim, Naeun;Han, Jae Hyun;Lee, Eui Chul
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.12
    • /
    • pp.671-676
    • /
    • 2016
  • Recently, according to the limelight of Fintech, simple payment using biometric at smartphone is widely used. In this paper, we propose a new contactless biometric method using thumb image without additional sensors unlike previous biometrics such as fingerprint, iris, and vein recognition. In our method, length, width, and skin texture information are used as features. For that, illumination normalization, skin region segmentation, size normalization and alignment procedures are sequentially performed from the captured thumb image. Then, correlation coefficient is calculated for similarity measurement. To analyze recognition accuracy, genuine and imposter matchings are performed. At result, we confirmed the FAR of 1.68% at the FRR of 1.55%. In here, because the distribution of imposter matching is almost normal distribution, our method has the advantage of low FAR. That is, because 0% FAR can be achieved at the FRR of 15%, the proposed method is enough to 1:1 matching for payment verification.

Non-contact Detection of Ultrasonic Waves Using Fiber Optic Sagnac Interferometer (광섬유 Sagnac 간섭계를 이용한 초음파의 비접촉식 감지)

  • Lee, Jeong-Ju;Jang, Tae-Seong;Lee, Seung-Seok;Kim, Yeong-Gil;Gwon, Il-Beom;Lee, Wang-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1400-1409
    • /
    • 2001
  • This paper describes a fiber optic sensor suitable for non-contact detection of ultrasonic waves. This sensor is based on a fiber optic Sagnac interferometer. Quadrature phase bias between two interfering laser beams in Sagnac loop is introduced by a polarization controller. A stable quadrature phase bias can be confirmed by observing the interferometer output versus phase bias. This method eliminates a digital signal processing for detection of ultrasonic waves using Sagnac interferometer. Interference intensity is affected by the frequency of ultrasonic waves and the time delay of Sagnac loop. Collimator is attached to the end of the probing fiber to focus the light beam onto the specimen surface and to collect the reflected light back into the fiber probe. Ultrasonic waves produced by conventional ultrasonic transducers are detected. This fiber optic sensor based on Sagnac interferometer is very effective for detection of small displacement with high frequency such as ultrasonic waves used in conventional non-destructive testing.

A Study on the Development of Noncontact Soldering Device of PV Cells Using Infrared Lamp (적외선 램프를 이용한 비접촉식 태양전지셀 솔더링 장치 개발에 관한 연구)

  • Lho, Tae-Jung;Kim, Seon-Jin;Park, Min-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.45-50
    • /
    • 2013
  • The reflector of infrared lamp is designed to the optimal circular shape through the analyses of lumination distributions with a triangular, rectangular and circular configurations of infrared lamps respectively by using Photopia. PLC is used to compare and amplify the difference between soldering temperature profile and feedback value. It is fed to IR lamp controller which adjusts the soldering temperature of PV cell. The soldering temperature measured using an infrared temperature sensor is then fed back to the PLC. The closed control loop of soldering temperature on a PV cell is implemented. The noncontact soldering device of PV cells using infrared lamp which is easily operated by HMI operation panel and controlled robustly by PLC and IR lamp controller is developed.

Non-contact Electronic Joystick with a Hall Sensor for Effective Tele-operation (원격작업의 효율성 향상을 위한 단일 홀센서 비접촉식 전자 조이스틱)

  • Kim Hong-Chul;Kang Dae-Hoon;Lee Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.4
    • /
    • pp.358-363
    • /
    • 2006
  • This paper demonstrates a new non-contact electronic joystick using single hall sensor which detects a horizontal vector of the magnetic field. Furthermore, in this paper, it is mathematically modeled that nonlinear characteristics between the output of hall sensor and the movement of joystick bar. The dynamic horizontal vector of magnetic flux is detected by the hall sensor while a permanent magnet is rotated with the joystick bar, which has two dimension detecting area. Using the nonlinear adjustment equations, the output signals of hall sensor have been linearized to give higher accuracy in the two dimension movement. Finally, through the real experiments, it is showed that the single hall sensor structure mechanism is superior to the dual sensor structure in sensing the two-dimensional motion without offset.