• Title/Summary/Keyword: 접촉식센서

Search Result 243, Processing Time 0.029 seconds

우주 비행체용 자이로 개발 현황

  • Park, Yeong-Ung;Park, Geun-Ju;Ju, Gwang-Hyeok;Lee, Hun-Hui
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.5 no.2
    • /
    • pp.58-66
    • /
    • 2007
  • 지상, 항공 및 우주를 이동하는 모든 물체는 반드시 자신의 자세를 결정하기 위해서 여러 가지 센서들을 장착하여 그 신호를 이용해서 자동 항법, 유도 및 제어를 수행한다. 이때, 동역학 특성이 빠른 시스템들은 반드시 각속도를 측정할 수 있어야 하는데 이를 해결하는 장비가 자이로인 것이다. 본 논문에서는 다양한 자이로를 소개하며 그 원리와 성능 그리고 적용 분야에 이르기까지 현황을 집중 분석하고 특히 세계적인 자이로 개발업체를 소개하면서 그 업체가 보유하고 있는 제품들을 일부 소개한다. 자이로는 초창기 김벌 시스템을 이용한 관성원리를 적용한 것부터 시작하여 현재는 광학 시스템을 적용한 RLG 및 FOG 자이로가 많은 분야에서 사용되고 있고, 최근 새롭게 부각되어 개발을 시작하고 있는 MEMS 자이로가 있는데 아직 우주 비행체 분야에서는 적용되지 못하고 있다. 그리고, 자이로의 큰 범주로 다루어지지는 않지만 자기력을 이용해서 회전체인 로터와 고정체인 플랫폼 사이에 기계식 접촉이 전혀 없는 새로운 시스템인 ESG 자이로도 일부 상용으로 생산되고 있다. 현재까지는 기계식 자이로의 정밀도 및 안정성이 광학식 자이로보다 우수하여 많이 사용되고 있지만 최근의 개발 추세로 보면 곧 광학식 자이로의 강세가 두드러질 것으로 보인다.

  • PDF

Implementation of Low Noise Current Sensor using Low Pass FIR Filter (저역통과 FIR필터를 이용한 저잡음 전류 센서 구현)

  • Kim, Jeong-Hwan;Lee, Seong-Jin;Choi, Yong-geon;Han, Seong-Gye;Kwon, Se-Ik;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.499-502
    • /
    • 2017
  • The needs of efficient electricity use and current measurement for electrical safety have been increased. Hence, the current sensor is used, especially non-contact current sensor which can measure the current without blocking the circuit using hall effect. However, the accurate measuring of the current sensor is inhibited due to the inflow of various noises in this current sensor. In this article, a stronger current sensor against the noise is proposed using low pass FIR filter to the existing current sensor. FIR filter was designed to block the range over the certain frequency at the output of the current sensor to eliminate the external noises, and so on. As a result, more accurate and close measurements were possible.

  • PDF

Effect of the Configuration of Contact Type Textile Electrode on the Performance of Heart Activity Signal Acquisition for Smart Healthcare (스마트 헬스케어를 위한 심장활동 신호 검출용 접촉식 직물전극의 구조가 센싱 성능에 미치는 영향)

  • Cho, Hyun-Seung;Koo, Hye-Ran;Yang, Jin-Hee;Lee, Kang-Hwi;Kim, Sang-Min;Lee, Jeong-Hwan;Kwak, Hwy-Kuen;Ko, Yun-Su;Oh, Yun-Jung;Park, Su-Youn;Kim, Sin-Hye;Lee, Joo-Hyeon
    • Science of Emotion and Sensibility
    • /
    • v.21 no.4
    • /
    • pp.63-76
    • /
    • 2018
  • The purpose of this study was to investigate the effect of contact type textile electrode structure on heart activity signal acquisition for smart healthcare. In this study, we devised six contact type textile electrodes whose electrode size and configuration were manipulated for measuring heart activity signals using computerized embroidery. We detected heart activity signals using a modified lead II and by attaching each textile electrode to the chest band in four healthy male subjects in a standing static posture. We measured the signals four times repeatedly for all types of electrodes. The heart activity signals were sampled at 1 kHz using a BIOPAC ECG100, and the detected original signals were filtered through a band-pass filter. To compare the performance of heart activity signal acquisition among the different structures of the textile electrodes, we conducted a qualitative analysis using signal waveform and size as parameters. In addition, we performed a quantitative analysis by calculating signal power ratio (SPR) of the heart activity signals obtained through each electrode. We analyzed differences in the performance of heart activity signal acquisition of the six electrodes by performing difference and post-hoc tests using nonparametric statistic methods on the calculated SPR. The results showed a significant difference both in terms of qualitative and quantitative aspects of heart activity signals among the tested contact type textile electrodes. Regarding the configurations of the contact type textile electrodes, the three-dimensionally inflated electrode (3DIE) was found to obtain better quality signals than the flat electrode. However, regarding the electrode size, no significant difference was found in performance of heart signal acquisition for the three electrode sizes. These results suggest that the configuration method (flat/3DIE), which is one of the two requirements of a contact type textile electrode structure for heart activity signal acquisition, has a critical effect on the performance of heart activity signal acquisition for wearable healthcare. Based on the results of this study, we plan to develop a smart clothing technology that can monitor high-quality heart activity without time and space constraints by implementing a clothing platform integrated with the textile electrode and developing a performance improvement plan.

Development and Application of IoT-based Contactless Ultraosonic System (IoT 기반 비접촉 초음파 측정 시스템 개발 및 적용)

  • Kim, Jihwan;Hong, Jinyoung;Kim, Rrulri;Woo, Ukyong;Choi, Hajin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.70-79
    • /
    • 2020
  • The main objective of this research to develop an IoT based wireless contactless ultrasonic system (ICUS) and its application to concrete structure. The developed system consists of 16 mems, 2Mhz digitizer, amplifying circuit, FPGA, and wifi module, enabling to measure leaky surface waves from concrete specimens without physical coupling process and wires. Multi-channel analysis is performed to improve the accuracy of data analysis, and the velocity of leaky surface waves and acoustics are derived. Field inspection of railroad concrete sleepers is conducted to evaluate the performance of the system and to compare the results with conventional ultrasonic pulse velocity (UPV). As a result of the field inspection, UPV was limited to evaluate damages. This is because crack pattern of railroad sleepers is parallel to ultrasonic ray path and accessibility of the railroad at the field is disadvantageous to contact-based UPV. On the other hand, ICUS possibly detect the damages as reduction of dynamic modulus by up to 59% compared to non-damaged specimen.

A Study on the Multi-sensor Toilet (다중센서 양변기에 관한 연구)

  • Lim, Jeong-Been;Park, Nam-Ki;Choi, Bo-Gyeom;Kim, Yeon-Koung;Kim, Jae-Wook
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.201-206
    • /
    • 2022
  • In this paper, a flushing system with automatic opening and closing function of the toilet cover was studied. It works by an infrared sensor attached to the cover is detected or not. When the infrared sensor of the open function detects it, the servomotor is driven on the toilet cover to raise the cover, and when the infrared sensor with the close function detects the infrared sensor, the cover is set to be lowered. A tilt sensor is attached to the inside of the cover to operate when the cover goes down, and when this is activated, the servomotor connected to the toilet lever opens the stopper of the supply port and sends water down. In addition, we minimized the inconveniences for the next user when they use the toilet by using the non-contact water level sensor and LED function to notice the water is clogged during the flushing process. Also, we implemented UV-LED function to prevent bacterial growth while the toilet is closed.

Development of the Non-Contact Torque Sensor for EPAS Using Maluss Polarization Law (Malus의 편광법칙을 이용한 EPAS용 비접촉 torque sensor 개발)

  • Roh, Byung-Ok;Park, Ho;Kang, Pan-Shik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1039-1046
    • /
    • 2001
  • Among the automotive steering systems, an Electric Power Assisted steering (EPAS) system utilizes an electronically controlled electric motor to provide steering assistance to the driver. The key components of the EPAS system are torque sensor, ECU (Electronic Control Unit), and DC Motor. The most important component of the EPAS is the torque sensor. The conventional torque sensor has complicated mechanical mechanism of torque detection. However, we suggest a non-contact torque sensor for EPAS using Maluss polarization law. It was found that the sensor exhibited not only excellent linearity but also superior characteristics of hysteresis, temperature and vibration.

A Design and Implementation of Busbar Joint and Temperature Measurement System (부스바 접촉 상태 및 온도 감지 시스템 설계 및 구현)

  • Lee, Young-dong;Jeong, Sung-Hak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.2
    • /
    • pp.379-385
    • /
    • 2017
  • In general, distribution board, panel board and motor control center can be installed over a wide area such as residence of group, building, schools, factories, ports, airports, water service and sewerage, substation and heavy industries that are used to supply converts the voltages extra high voltage into optimal voltage. There are electrical accidents due to rise of contact temperature, loose contact between busbar, deterioration of the contact resistance, over temperature of the busbars. In this paper, we designed and implemented the busbar joint and temperature measurement system, which can measure the joint resistance of busbar and loose connection between busbar using potentiometer and non-contact infrared sensor. The experimental results show that tightening the bolt and nut is fully engaged, resistance was decreased and maximum error range was 0.1mm. Also, the experimental result showed that the temperature at the contact area is increased from $27.3^{\circ}C$ to $69.3^{\circ}C$by the contact resistance.

Sensor Structure and Signal Processing System for Precision Optical Displacement Measurement (초정밀 광학식 변위 측정을 위한 센서 구호 밀 신호 처리 시스템)

  • O, Se-Baek;Kim, Gyeong-Chan;Kim, Su-Hyeon;Gwak, Yun-Geun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.40-47
    • /
    • 2001
  • Optical measurement methods make it possible to detect object displacements with high resolution and noncontact measurements. Also, they are very robust against EMI noises and have long operation range. An optical triangulation sensor is one of widely used displacement measurement sensors for its sub-micron resolution, fast response, simple structure, and low cost. However. there are several errors caused by inclinations of a surface. speckle effects, power fluctuations of light sources, and noises of detectors. In this paper, in order to minimize error effects, we performed error analysis and proposed a new structure. Then, we setup a new modeling method and verify it through simulations and experiments. Based on the new model. we propose a new sensor structure and establish design criteria. Finally, we design a signal processing system to overcome a resolution-limited problem of light detectors. The resolution of the proposed system is 0.2${\mu}{\textrm}{m}$ in 5mm operating range.

  • PDF

Catalytic combustion type hydrogen micro gas sensor using thin film heater and nano crystalline SnO2 (나노 결정 SnO2와 백금 박막히터를 이용한 접촉연소식 마이크로 가스센서의 감응특성 연구)

  • Han, Sang-Do;Hong, Dae-Ung;Han, Chi-Hwan;Chun, Il-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.178-182
    • /
    • 2008
  • Planar type micro catalytic combustible gas sensor was developed by using nano crystalline $SnO_2$ Pt thin film as micro heater was deposited by thermal evaporation method on the alumina substrate. The thickness of the Pt heater was around 160 nm. The sensor showed high reliability with prominent selectivity against various gases(Co, $C_3H_8,\;CH_4$) at low operating temperature($156^{\circ}C$). The sensor with nano crystalline $SnO_2$ showed higher sensitivity than that without nano crystalline $SnO_2$. This can be explained by more active adsorption and oxidation of hydrogen by nano crystalline $SnO_2$ particles. The present planar-type catalytic combustible hydrogen sensor with nano crystalline $SnO_2$ is a good candidate for detection of hydrogen leaks.

Improved hydrogen sensing characteristics of flat type catalytic combustible hydrogen gas sensor of micro-structure (평판형 접촉연소식 마이크로 수소센서의 감지특성 향상)

  • Kim, Chan-Woo;Gwak, Ji-Hye;Chun, Il-Su;Han, Sang-Do;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.3
    • /
    • pp.202-206
    • /
    • 2009
  • Flat type catalytic combustible hydrogen sensors were fabricated using platinum micro-heaters and sensing material pastes. The platinum micro-heater was formed on an alumina substrate by sputtering method. The paste for the sensing materials was prepared using ${\gamma}-Al_2O_3$ 30 wt%, $SnO_2$ 35 wt%, and Pd/Pt 30 wt% and coated on the platinum micro-heater. The sensing performances were tested for the prepared sensors with different substrate sizes. The micro catalytic combustible hydrogen sensors showed quick response time, high reliability, and good selectivity against various gases(CO, $C_3H_8,\;CH_4$) at low operating temperature of $156^{\circ}\C$.