• Title/Summary/Keyword: 접촉기하

Search Result 100, Processing Time 0.023 seconds

A New Coefficient for Three Dimensional Quantification of Rock Joint Roughness (암석 절리면 거칠기의 새로운 3차원 정량화 계수)

  • Park, Jung-Wook;Lee, Yong-Ki;Song, Jae-Joon;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.106-119
    • /
    • 2012
  • Roughness of rock joint has generally been characterized based upon geometrical aspects of a two-dimensional surface profile. The appropriate description of joint roughness, however, should consider the features of roughness mobilization at contact areas under normal and shear loads. In this study, direct shear tests were conducted on the replicas of tensile fractured gneiss joints and the influence of the shear direction on the shear behavior and effective roughness was examined. In this procedure, a joint surface was represented as a group of triangular planes, and the steepness of each plane was characterized using the concepts of the active and inactive micro-slope angles. The contact areas at peak strength which were estimated by a numerical method showed that the locations of the contact areas were mainly dependent on the distribution of the micro-slope angle and the shear behavior of joint was dominated by only the fractions with active micro-slope angles. Therefore, a three-dimensional coefficient for the quantification of rock joint roughness is proposed based on the distribution of active micro-slope angle: active roughness coefficient, $C_r$. Comparison of the active roughness coefficient and the peak shear strength obtained from the experiment suggests that the active roughness coefficient is the effective parameter to quantify the surface roughness and estimate the shear behavior of rock joint.

Splice Strengths of Noncontact Lap Splices Using Strut-and-Tie Model (스트럿-타이 모델을 이용한 비접촉 겹침 이음의 이음 강도 산정)

  • Hong, Sung-Gul;Chun, Sung-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.199-207
    • /
    • 2007
  • Strut-and-tie models for noncontact lap splices are presented and parameters affecting the effective lap length $(l_p)$ and the splice strength are discussed in this paper. The effective lap length along which bond stress is developed is shorter than the whole lap length. The effective lap length depends on the transverse reinforcement ratio $({\Phi})$ and the ratio of spacing to lap length $({\alpha})$. As the splice-bar spacing becomes wider, the effective lap length decreases and, therefore, the splice strength decreases. The influence of the ratio ${\alpha}$ on the effective lap length becomes more effective when the transverse reinforcement ratio is low. Because the slope of the strut developed between splice-bars becomes steeper as the ratio ${\Phi}$ becomes lower, the splice-bar spacing significantly affects the effective lap length. The proposed strut-and-tie models for noncontact lap splices are capable of considering material and geometric properties and, hence, providing the optimal design for detailing of reinforcements. The proposed strut-and-tie model can explain the experimental results including cracking patterns and the influence of transverse reinforcements on the splice strength reported in the literature. From the comparison with the test results of 25 specimens, the model can predict the splice strengths with 11.1% of coefficient of variation.

Experimental Validation of Isogeometric Optimal Design (아이소-지오메트릭 형상 최적설계의 실험적 검증)

  • Choi, Myung-Jin;Yoon, Min-Ho;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.5
    • /
    • pp.345-352
    • /
    • 2014
  • In this paper, the CAD data for the optimal shape design obtained by isogeometric shape optimization is directly used to fabricate the specimen by using 3D printer for the experimental validation. In a conventional finite element method, the geometric approximation inherent in the mesh leads to the accuracy issue in response analysis and design sensitivity analysis. Furthermore, in the finite element based shape optimization, subsequent communication with CAD description is required in the design optimization process, which results in the loss of optimal design information during the communication. Isogeometric analysis method employs the same NURBS basis functions and control points used in CAD systems, which enables to use exact geometrical properties like normal vector and curvature information in the response analysis and design sensitivity analysis procedure. Also, it vastly simplify the design modification of complex geometries without communicating with the CAD description of geometry during design optimization process. Therefore, the information of optimal design and material volume is exactly reflected to fabricate the specimen for experimental validation. Through the design optimization examples of elasticity problem, it is experimentally shown that the optimal design has higher stiffness than the initial design. Also, the experimental results match very well with the numerical results. Using a non-contact optical 3D deformation measuring system for strain distribution, it is shown that the stress concentration is significantly alleviated in the optimal design compared with the initial design.

Three-Dimensional Kinematic Model of the Human Knee Joint during Gait

  • Mun, Joung-Hwan;Seichi Takeuchi
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.3
    • /
    • pp.171-179
    • /
    • 2002
  • It is well known that the geometry of the articular surface plays a major role in the kinematic and kinetic analysis to understand human knee joint function during motion. The functionality of the knee joint cannot be accurately modeled without considering the effects of sliding and lolling motions. We Present a 3-D human knee joint model considering sliding and rotting motion and major ligaments. We employ more realistic articular geometry using two cam profiles obtained from the extrusion of the sagittal Plain view of the representative Computerized Tomography image of the knee joint compared to the previously reported model. Our model shows good agreement with the already reported experimental results on Prediction of the lines of force through the human joint during gait. The contact point between femur and tibia moves toward the Posterior direction as the knee undergoes flexion, reflecting the coupling of anterior and Posterior motion with flexion/extension. The anterior/posterior displacement of the contact Point on the tibia plateau during one gait cycle is about 16 mm. for the lateral condyle and 25 mm. for the medial condyle using the employed model Also. the femur motion on the tibia undergoes lateral/medial movement about 7 mm. and 10 mm. during one gait cycle for the lateral condyle and medial condyle. respectively. The developed computational model maybe Potentially employed to identify the joint degeneration.

Dynamic Analysis of Prestressed Liquid Storage Tanks Considering Fluid Effect (유체의 영향을 고려한 프리스트레스트 액체저장 탱크의 동적해석)

  • 황철성;백인열
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.4
    • /
    • pp.71-82
    • /
    • 1999
  • An axisymmetric shell element which includes the effects of the meridional and circumferential cable prestresses is developed. The fluid-structure interaction is expressed as added mass effect which is in proportion to the acceleration of the structure in interface surface. The added mass is obtained by using finite element method under the assumption that the fluid is invicid, incompressible and irrotational. It is coded for personal computer by the maximum use of axisymmetic properties and the dynamic analysis are performed under seismic exitations. A ring element makes the characteristics of the axisymmetric shell to be fully utilized. The elgenvalue solutons under the initial prestresses and the internal fluid are well agreed with the exact solutions and references by using under 20 elements. The eigenvalues are decreased along the increasing the height of internal fluid and these effects are dominant under the lower wave numbers. The results of the seismic analysis show that the radial deflection under the meridional prestress is a little larger than that under the circumferential prestress.

  • PDF

Isogeometric Analysis of Electrostatic Adhesive Forces in Two-Dimensional Curved Electrodes (2차원 곡면형 전극에서 정전기 흡착력의 아이소-지오메트릭 해석)

  • Oh, Myung-Hoon;Kim, Jae-Hyun;Kim, Hyun-Seok;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.199-204
    • /
    • 2021
  • In this study, an isogoemetric analysis (IGA) method that uses NURBS (Non-Uniform Rational B-Spline) basis functions in computer-aided design (CAD) systems is employed to account for the geometric exactness of curved electrodes constituting an electro-adhesive pad in electrostatic problems. The IGA is advantageous for obtaining precise normal vectors when computing the electro-adhesive forces on curved surfaces. By performing parametric studies using numerical examples, we demonstrate the superior performance of the curved electrodes, which is attributed to the increase in the normal component of the electro-adhesive forces. In addition, concave curved electrodes exhibit better performance than their convex counterparts.

Parametric Design of Contact-Free Transportation System Using The Repulsive Electrodynamic Wheels (반발식 동전기 휠을 이용한 비접촉 반송 시스템의 변수 설계)

  • Jung, Kwang Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.310-316
    • /
    • 2016
  • We propose a novel contact-free transportation system in which an axial electrodynamic wheel is applied as an actuator. When the electrodynamic wheel is partially overlapped by a fixed conductive plate and rotates over it, three-axis magnetic forces are generated on the wheel. Among these forces, those in the gravitational direction and the lateral direction are inherently stable. Therefore, only the force in the longitudinal direction needs to be controlled to guarantee spatial stability of the wheel. The electrodynamic wheel consists of permanent magnets that are repeated and polarized periodically along the circumferential direction. The basic geometric configuration and the pole number of the wheel influence the stability margin of a transportation system, which would include several wheels. The overlap region between the wheel and the conductive plate is a dominant factor affecting the stiffness in the lateral direction. Therefore, sensitivity analysis for the major parameters of the wheel mechanism was performed using a finite element tool. The system was manufactured based on the obtained design values, and the passive stability of a moving object with the wheels was verified experimentally.

Damage Assessment of Curved Composite Laminate Structures Subjected to Low-Velocity Impact (곡률을 가진 적층복합재 구조에서의 저속충격손상 평가)

  • 전정규;권오양;이우식
    • Composites Research
    • /
    • v.14 no.2
    • /
    • pp.22-32
    • /
    • 2001
  • Damage induced by low-velocity impact on the curved composite laminates was experimentally evaluated for CFRP cylindrical shells with the radius of curvatures of 50, 150, 300, and 500 mm. The result was then compared with that of flat laminates and with the results by nonlinear finite-element analysis. The radius of curvatures and the effective shell stiffness appeared to considerably affect the dynamic impact response of curved shells. Under the same impact energy level, the maximum contact force increased with the decreasing radius of curvatures, with reaching 1.5 times that for plates at the radius of curvature of 50 mm. Since the maximum contact farce is directly related to the impact damage, curved laminates can be more susceptible to delamination and less resistant to the low-velocity impact damage. Delamination was distributed rather evenly at each interface along the thickness direction of curved laminates on the contrary to the case of flat laminates, where delamination is typically concentrated at the interfaces away from the impact point. This implies that the effect of curvatures has to be considered for the design of a curved composite laminate.

  • PDF

The friction effects at high strain rates of materials under dynamic compression loads (동압축 하중을 받는 재료의 고변형도율에서의 마찰영향)

  • 김문생
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.3
    • /
    • pp.454-464
    • /
    • 1987
  • The objective of this research is to analyze and evaluate the dynamic flow curve of metals under impact loading at both high strain rate (.epsilon.=1/h dh/dt > 10$\^$3/m/s/m) and large strain (.epsilon.=In h/h$\_$0/ > 1.0). A test method for dynamic compression of metal disc is described. The velocity of the striker face and the force on the anvil are measured during the impact period. From these primitive data the axial stress, strain, and strain rate of the disc are obtained. The Strain rate is determined by the striker velocity divided by the specimen height. This gives a slightly increasing strain rate over most of the deformation period. Strain rates of 100 to 10,000 per second are achieved. Attainable final strains are 150%. A discussion of several problem areas is presented. The friction on the specimen surfaces, the determination of the frictional coefficient, the influence of the specimen geometry (h$\_$0//d$\_$0/ ratio) on the friction effect, the lock-up condition for a given configuration, the friction correction factor, and the evaluation of several lubricants are given. The flow function(stress verus strain) is dependent on the material condition(e.g., prior cold work), specimen geometry, strain rate, and temperature.

Accuracy Analysis of Close-Range Digital Photogrammetry for Measuring Displacement about Loading to Structure (하중에 따른 구조물 변위계측을 위한 근접수치사진측량의 정확도 분석)

  • Choi, Hyun;Ahn, Chang Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.4D
    • /
    • pp.545-553
    • /
    • 2009
  • This paper describes the result of study on measurement of displacement of structure by means of non-contacting method, close-range digital photogrammetry using digital camera. To apply close-range digital photogrammetry to displacement measurement of structure, correction of lens distortion that interferes geometrical analysis has been carried out and then measuring displacement was performed on load regulated-rahmen. For enhanced applicability of displacement measurement, MIDAS which is a structural analysis program was used for modeling and the result was taken from comparative analysis. As a result of the study, it is showed that close-range digital photogrammetry could supplement several weaknesses of LVDT and cable displacement meter and, especially, economy in the perspective of measuring time could be realized. Close-range digital photogrammetry using digital camera can be applied to the area where requires visual analysis such as 3D modeling of structure, profile replication of measurement of structure as well as measurement of displacement of structure.