• Title/Summary/Keyword: 접착요소

Search Result 182, Processing Time 0.025 seconds

Prediction Fracture Strength on Adhesively Bonded scarf Joints in Dissimilar Materials (이종재료의 경사접착이음에 대한 파괴강도의 예측)

  • 정남용
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.4
    • /
    • pp.50-60
    • /
    • 1995
  • Recently advantages joining dissimiliar materials and light weight material techniques have led to increasing use of structural adhesives in the various industries. Stress singulartiy occurs at the interface edges of adhesively bonded dissimilar materials. So it is required to analyze its stress singularity at the interface edges of adhesively bonded joints indissimilar materials. In this paper, the analysis method of stress singularity is studied in detail. Also, effects of the stress singularity at the interface edge of adhesively bonded scarf joints in combinations of dissimilar materials are investigated by using 2-dimensional elastic program of boundary element method. As the results, the strength evaluation method of adhesively bonded dissimilar materials using the stress singularity factor, $\Gamma$,is very useful. The fracture criterion, method of strength evaluation and prediction of fracture strength by the stress singularity factor on the adhesively bonded dissimilar materials are proposed.

  • PDF

The Stress Analysis of Semiconductor Package (반도체 패키지의 응력 해석)

  • Lee, Jeong-Ick
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.3
    • /
    • pp.14-19
    • /
    • 2008
  • In the semiconductor IC(Integrated Circuit) package, the top surface of silicon chip is directly attached to the area of the leadframe with a double-sided adhesive layer, in which the base layer have the upper adhesive layer and the lower adhesive layer. The IC package structure has been known to encounter a thermo-mechanical failure mode such as delamination. This failure mode is due to the residual stress on the adhesive surface of silicon chip and leadframe in the curing-cooling process. The induced thermal stress in the curing process has an influence on the cooling residual stress on the silicon chip and leadframe. In this paper, for the minimization of the chip surface damage, the adhesive topologies on the silicon chip are studied through the finite element analysis(FEA).

Measurement of Interfacial Crack Length by Ultrasonic Attenuation Coefficients on Adhesively Bonded Components (접착부재의 초음파 감쇠계수에 의한 계면균열 길이의 측정)

  • 정남용;박성일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.130-137
    • /
    • 2004
  • The ultrasonic attenuation coefficients were measured by interfacial crack length in the adhesive components of double-cantilever beam(DCB). The energy release rate, G, was obtained by the experimental measurement of compliance. The numerical analysis by the boundary element method(BEM) and Ripling's equation was investigated. The experimental results represent that the relation between interfacial crack length for the ultrasonic attenuation coefficient and energy release rate is increased proportionally. A measurement method of the interfacial crack length by the ultrasonic attenuation coefficient was proposed and discussed.

Effect of Agricultural Straw Addition in Particleboard Bonded with Melamine-urea-formaldehyde Resin (요소-멜라민수지로 접착된 파티클보드에 농작물 짚 첨가의 효과)

  • Lee, Jong-Kyu;Kim, Jong-In;Oh, Yong-Sung
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.6
    • /
    • pp.476-480
    • /
    • 2005
  • Agricultural straws such as rice and barley were used as partial replacement of raw materials for particleboard (PB) manufacture. A melamine-urea-formaldehyde (MUF) resin, based on 5 percent melamine addition of the resin solids weight, was synthesized in the laboratory for the bonding of PB. PBs were made using two straw particles based on 10, 20, 30, 40% oven dry weight addition with MUF resin. PBs were tested for physical and mechanical properties, and water soak dimensional stability. The results indicated that as rice and barley straws addition level were increased, the properties of IB, MOR and dimensional stabilities such as thickness swell and water absorption were decreased. Overall, the agricultural straws can be used at 15% substitution of raw materials for PB manufacture.

Numerical Study on Inverse Analysis Based on Levenberg-Marquardt Method to Predict Mode-I Adhesive Behavior of Fiber Metal Laminate (섬유금속적층판의 모드 I 접합 거동 예측을 위한 Levenberg-Marquardt 기법 기반의 역해석 기법에 관한 수치적 연구)

  • Park, Eu-Tteum;Lee, Youngheon;Kim, Jeong;Kang, Beom-Soo;Song, Woojin
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.177-185
    • /
    • 2018
  • Fiber metal laminate (FML) is a type of hybrid composites which consist of metallic and fiber-reinforced plastic sheets. As the FML has a drawback of the delamination that is a failure of the interfacial adhesive layer, the nominal stresses and the energy release rates should be determined to identify the delamination behavior. However, it is difficult to derive the nominal stresses and the energy release rates since the operating temperature of the equipment is restricted. For this reason, the objective of this paper is to predict the mode-I nominal stress and the mode-I energy release rate of the adhesive layer using the inverse analysis based on the Levenberg-Marquardt method. First, the mode-I nominal stress was assumed as the tensile strength of the adhesive layer, and the mode-I energy release rate was obtained from the double cantilever beam test. Next, the finite element method was applied to predict the mode-I delamination behavior. Finally, the mode-I nominal stress and the mode-I energy release rate were predicted by the inverse analysis. In addition, the convergence of the parameters was validated by trying to input two cases of the initial parameters. Consequently, it is noted that the inverse analysis can predict the mode-I delamination behavior, and the two input parameters were converged to similar values.

Compressive Strength of FRP for Insulator According to Winding Angles (절연용 FRP의 와인딩 각도에 따른 압축강도 연구)

  • Park, Hoy-Yul;Kang, Dong-Pil;Ahn, Myeong-Sang;Myung, In-Hae
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1439-1441
    • /
    • 2003
  • 전기절연재의 구조재로 많이 사용되고 있는 FRP(fiber reinforced plastics)는 열경화성 수지를 접착성 결합제(binder)로 하고 고강도 섬유를 보강재로 한 복합재료로서 기계적, 화학적, 전기적 특성이 매우 우수하다. FRP의 기계적 강도는 유리섬유에 의존 하고 있으므로 유리섬유의 방향과 힘을 가하는 방향에 따라서 그 강도의 차이는 매우 크게 나타난다. 본 연구에서는 섬유의 배향에 따른 강도의 변화를 이해하기 위하여 시편을 제작하여 압축강도를 측정하고 압축강도와 응력의 분포를 유한요소법으로 시뮬레이션하였다. FRP rod에 압축응력이 가해졌을 때 섬유의 배향에 따른 파괴강도와 응력의 분포를 유한요소법을 이용하여 시뮬레이션하였고 모델링에는 3-D Shell과 3-D Brick 요소를 사용하였다. 제작된 시편의 강도특성과 시뮬레이션을 통한 응력의 분포를 서로 비교하여 시편의 파괴에 미치는 응력을 고찰하였다.

  • PDF

Evaluation of Com-Ply from Domestic Logs and Urea-Formaldehyde Resin Adhesive (국산재와 요소수지접착제로 제조된 Com-Ply의 평가)

  • Oh, Yong-Sung;Kim, Jong-In
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.1
    • /
    • pp.54-57
    • /
    • 2007
  • Urea-formaldehyde (UF) resin was formulated similarly to plywood resin in the laboratory. The synthesized UF resin adhesive was mixed with extender, filler and acid catalyst. The mixture contained 56.1% total solids and 43.9% water. The mixes was used to bond five Com-Ply types using Korean wood species. The Com-Ply made were tested for shear strength and wood failure according to KS F 3101 ordinary plywood as well as for bending strength per KS F 3104 particleboard. The performance test results showed good strength properties for all Com-Ply types made in this study. This result represented that the UF resin adhesive mix was adequate for bonding Com-Ply with domestic wood species.

Fracture analysis of weld specimen using 3-dimensional finite element method (3차원 유한요소법을 이용한 용접시편의 파괴 해석)

  • Yang Seung-Yong;Goo Byeong-choon
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.385-390
    • /
    • 2005
  • A specimen with residual stress due to welding was analyzed by three-dimensional cohesive zone model. The residual stress distribution was calculated by simulating welding process, and cohesive elements were located along crack propagation planes. Crack growth is possible since two planes of the cohesive element are separated beyond a maximum load carrying capacity. Stress fields around a crack tip are compared for specimens with and without residual stresses. Load-displacement curves and crack growth behaviors are also examined.

  • PDF

복합재료 패치를 사용한 균열 보수의 소성변형과 접착층 분리를 고려한 해석

  • 김일중;박재학
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2001.11a
    • /
    • pp.118-123
    • /
    • 2001
  • 항공기 운항 중에 손상된 부품의 교환이나 수리는 항공기 운항 시 안전 유지와 고가의 항공기 수명연장을 위하여 필수적이다. 여러 가지 손상이나 고장 중에서 균열은 기계적 체결요소(리벳, 볼트 등)나 패칭에 의하여 효과적으로 보수될 수 있다. 항공기 동체 보수 시 접착제 접합을 사용한 복합재료 패칭은 하부구조에 손상이 없이 균열진전을 줄일 수 있고 구멍의 생성으로 인한 응력 집중을 제거할 수 있으며 접합된 면을 외부로부터 차단시켜 부식을 방지하는 효과가 있어 많이 사용된다 특히 고강도 복합재료와 접착제의 개발로 인하여 손상된 구조의 보수를 위한 복합재료 패칭의 사용은 더욱 증가되고 있다.(중략)

  • PDF

물성치가 상이한 계에서 응력장 개선 연구

  • 송기남
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.30-35
    • /
    • 1997
  • 물성치가 상이한 계에서 접합면을 포함한 전 영역내의 연속 응력장 개선방안을 제안하였다. 재료의 물성치가 100배 차이가 나는 직선보 예제에 대해 변위형 유한요소해에서는 접착면 상ㆍ하측에서 응력들이 불연속이며 상당한 차이를 보이고 있는데 반하여 본 연구에서의 응력장은 연속이며 접합면의 절점응력들이 이론해에 근접하고 있다 또한 본 연구에서의 연속 응력장으로 계산한 변형률 에너지는 수회 이내의 반복계산에서 이론해에 수렴하고 있다.

  • PDF