• Title/Summary/Keyword: 점 용접

Search Result 500, Processing Time 0.026 seconds

Load-Deformation Relationship of Single Bolted Connections (단일볼트 지압접합부의 힘-변형관계)

  • Kim, Dae Kyung;Lee, Cheol Ho;Jin, Seung Pyo;Yoon, Seong Hwahn
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.5
    • /
    • pp.341-352
    • /
    • 2017
  • Well designed group bolted connections can exhibit excellent ductile behavior through the bearing mechanism until the occurrence of shear rupture in the bolt or in the connecting plate. This excellent ductility can be utilized in favor of economical connection design. In this study, comprehensive tests on single-bolt bearing connections were conducted and analyzed considering bearing boundary conditions. The primary objective was to propose a generalized bearing strength and load-deformation relationship that can be used for designing group-bolted connections. To this end, new bearing strength formula, deformation limits as well as new load-deformation relationship were first proposed. Especially the proposed load-deformation relationship can reflect the stiffness, strength, and geometrical boundary conditions of the joint. The proposed formula and relationship are validated based on test results.

HPP, High-Pressure Process (저산성 식품에 유용한 고압처리 공정)

  • Lee, Bu-Yong
    • Bulletin of Food Technology
    • /
    • v.15 no.2
    • /
    • pp.93-99
    • /
    • 2002
  • 고압처리로 멸균된(high-pressure- sterilized) 저산성 식품은 아직 본격적으로 시장에 나오지는 않고 있다. 그러나 고압처리로 살균시켜(high-pressure-pasteurized) 제품의 부가가치를 높인 상품들은 일부 시판되고 있다. 미국시장에는 구아카몰(guacamole),굴 등이 있고, 일본과 유럽에는 잼, 젤리, 생선제품, 육제품, 슬라이스 햄, 샐러드 드레싱, 쌀떡, 주스, 요구르트 등이 판매되고 있다. 기술이 발전되어 처리비용이 떨어짐에따라 우유나 오렌지 주스 같은 저부가가치의 제품(high-volume commodity products)에도 고압처리 기술이 적용되는 예를 보게 될 것이다.미국 FDA의 "열처리된 저산성식품은 용접밀봉된 용기(캔, hermetically sealed container)에 포장되어야 한다." 는 규정(Title 21, Part 113 of the Code Federal Regulations)은 고압처리 식품을 염두에 두고 만들어진 규정은 아니지만, 저산성식품의 고압처리 공정(high-pressure processing)은 강력한 살균력을 제공하고 있다. 따라서 위의 FDA 규정(21 CFR 113)의 모든 조항은 고압처리 저산성 식품이 상업적인 생산에 들어가기 전에 시행되어야만 하는 것이다. 그 규정의 주요 조항중의 하나는 고압처리 공정에 대한 전문적인 지식을 가진 전문가나 위원회 등에 의하여 세부적인 고압처리공정 절차를 확립하는 것이다. 공정의 전문가들은 안전성을 증명하기 위해서 적합한 과학적인 방법을 사용하여 고압처리 공정을 확립해야만 한다. 저산성 식품에 대한 고압처리 공정은 주의깊게 설정된 공정조건하에서 재현성 있게 안전한 식품을 생산할 수 있어야 한다. 살균에 대한 안전성과 재현성이 입증되면 고압에 의한 살균처리공정 설계는 일반적인 대량생산 공정으로 활용될 수 있게 된다. PP(고압처리공정)의 유효성이 보다 확실하게 입증되고 널리 활용되려면, 공정의 살균력과 일관성(uniformity)을 증명하는 미생물적, 물리적, 화학적, 공학적인 여러 분야가 통합된 검증방법이 필요하다. 전통적인 열처리 공정은 스팀열의 가열시간으로 설명이 충분하다. 물론 HPP살균에서도 시간과 온도는 주요 변수이지만, 압력에 의한 미생물살균도 고려되어야만 한다. 또한 점도, 밀도, 구성성분, pH, 수분활성도 같은 해당제품의 특성도 제품의 고압처리 살균공정, 특히 미생물의 사멸에 영향을 미칠 수도 있다.

  • PDF

Tensile properties and Spot Weldability of Trip High Strength Steel Sheet (Trip형 고장력강판의 인장성질 및 점용접성)

  • Kang, C.Y.;Kim, H.J.;Kim, C.G.;Lee, B.W.;Lee, M.Y.;Lee, G.H.;Kim, T.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.4
    • /
    • pp.295-304
    • /
    • 1998
  • The effects of retained austenite and carbon content in the retained austenite on the tensile strength-elongation balance and spot weldability of TRIP high strength steel sheet have been investigated. The retained austenite of granular type increased with increasing intercritical annealing and austempering temperature, and film type was increased with the increase of austempering time. The volume fraction of retained austenite increased with decreasing intereritical annealing temperature, and the maximum value was obtained at austempering temperature of $400^{\circ}C$. The values of tensile strength-elongation balance increased with decreasing intercritical annealing temperature and maximum value was obtained at austempering temperature of $400^{\circ}C$. The maximum value of tensile strength-elongation balance was obtained at a retained austenite content of about 12%. Tensile shear strength of the specimens with retained austenite was higher than that of the normalizing specimens. With increasing welding current and time, the tensile shear strengh and nugget diameter increased, while nugget thickness showed the peak value and then decreased. The optimum range of welding condition at the given welding pressure of 350kgf was 7~11kA and 10~15 cycles.

  • PDF

A Study on SiC/SiC and SiC/Mild steel brazing by the Ag-Ti based alloys (Ag-Ti계 합금을 사용한 SiC/SiC 및 SiC/연강 브레이징에 대한 연구)

  • 이형근;이재영
    • Journal of Welding and Joining
    • /
    • v.14 no.4
    • /
    • pp.99-108
    • /
    • 1996
  • The microstructure and bond strength are examined on the SiC/SiC and SiC/mild steel joints brazed by the Ag-Ti based alloys with different Ti contents. In the SiC/SiC brazed joints, the thickness of the reaction layers at the bond interface and the Ti particles in the brazing alloy matrices increase with Ti contents. When Ti is added up to 9 at% in the brazing alloy. $Ti_3SiC_2$ phase in addition to TiC and $Ti_5Si_3$ phase is newly created at the bond interface and TiAg phase is produced from peritectic reaction in the brazing alloy matrix. In the SiC/mild steel joints brazed with different Ti contents, the microstructure at the bond interface and in the brazing alloy matrix near SiC varies similarly to the case of SiC/SiC brazed joints. But, in the brazing alloy matrix near the mild steel, Fe-Ti intermetallic compounds are produced and increased with Ti contents. The bond strengths of the SiC/SiC and SiC/mild steel brazed joints are independent on Ti contents in the brazing alloy. There are no large differences of the bond strength between SiC/SiC and SiC/mild steel brazed joints. In the SiC/mild steel brazed joints, Fe dissolved from the mild steel does not affect on the bond strength of the joints. Thermal contraction of the mild steel has nearly no effects on the bond strength due to the wide brazing gap of specimens used in the four-point bend test. The brazed joints has the average bond strength of about 200 MPa independently on Ti contents, Fe dissolution and joint type. Fracture in four-point bend test initiates at the interface between SiC and TiC reaction layer and propagates through SiC bulk. The adhesive strength between SiC and TiC reaction layer seems to mainly control the bond strength of the brazed joints.

  • PDF

Resistance Spot Welding of Dissimilar Materials of Austenitic Stainless Steels and IF (Interstitial Free) Steels (저항 점 용접을 이용한 AISI 316 스테인레스강과 용융아연도금 강판의 이종접합)

  • Lee, Jin-Bum;Nam, Dae-Geun;Kang, Nam-Hyun;Kim, Yang-Do;Oh, Weon-Tae;Park, Yeong-Do
    • Korean Journal of Materials Research
    • /
    • v.19 no.7
    • /
    • pp.369-375
    • /
    • 2009
  • The spot weldability of dissimilar metal joints between stainless steels (AISI316) and interstitial free (IF) steels were investigated. This study was aimed to determine the spot welding parameters for a dissimilar metal joint and to evaluate the dissimilar metal joint's weldability, including its welding nugget shape, tensileshear strength, hardness, and microstructure. The fracture surface was investigated by using a Scanning Electron Microscopy (SEM). The experimental results showed that the shape of nugget was asymmetric, in which the fusion zone of the STS316 sheet was larger due to the higher bulk-resistance. The microstructure of the fusion zone was fully martensite. In order to evaluate the microstructure further, dilution of stainless steels were calculated and imposed onto the Schaeffler diagram. The predicted microstructure from the Schaeffler diagram was martensite. In order to confirm the predicted microstructure, XRD measurements were carried out. The results showed that that initial weld nugget was composed of austenite and martensite.

Characterization of Partial Interfacial Fracture on Resistance Spot-Welded TRIP Steels for Automotive Applications (자동차 차체용 TRIP강판의 저항 점용접부 Partial Interfacial Fracture 특성에 관한 연구)

  • Choi, Chul Young;Kim, In-Bae;Kim, Yangdo;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.136-145
    • /
    • 2012
  • Resistance spot welding of TRIP780 steels was investigated to enhance understanding of weld fracture mode after tensile shear testing (TST) and L-shape tensile testing (LTT). The main failure mode for spot welds of TRIP780 steels was partial interfacial fracture (PIF). Although PIF does not satisfy the minimum button diameter (4${\surd}$t) for acceptable welds, it shows enough load carrying capacity of resistance spot welds for advanced high strength steels. In the analysis of displacement controlled L-shape tensile test results, cracks initiated at the notch of the faying surface and propagated through the interface of weldments, and finally, cracks change path into the sheet thickness direction. Use of the ductility ratio and CE analysis suggested that the occurrence of PIF is closely related to high hardness and brittle welds, which are caused by fast cooling rates and high chemical compositions of TRIP steels. Analysis of the hold time and weld time in a welding schedule demonstrated that careful control of the cooling rate and the size of a weld nugget and the HAZ zone can reduce the occurrence of PIF, which leads to sound welds with button fractures (BFs).

The Effect of Paint Baking on the Strength and Failure of Spot Welds for Advanced High Strength Steels (고강도 강판 저항 점용접부 강도 및 파단에 미치는 Paint Baking의 영향)

  • Choi, Chul Young;Lee, Dongyun;Kim, In-Bae;Kim, Yangdo;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.12
    • /
    • pp.967-976
    • /
    • 2011
  • Conventional fracture tests of resistance spot welds have been performed without consideration of the paint baking process in the automobile manufacturing line. The aim of this paper is to investigate the effect of the paint baking process on load carrying capacity and fracture mode for resistance spot welded 590 dual phase (DP), 780DP, 980DP, 590 transformation in duced plasticity (TRIP), 780TRIP and 1180 complex phase (CP) steels. With paint baking after resistance spot welding, the l-shape tensile test (LTT) and nano-indentation test were conducted on the as-welded and paint baked samples. Paint baking increased the load-carrying capacity of the resistance spot welded samples and improved the fracture appearance from partial interfacial fracture (PIF) to button fracture (BF). Improvement in fracture appearance after LTT is observed on weldments of 780 MPa grade TRIP steels, especially in the low welding current range with paint baking conditions. The higher carbon contents (or carbon equivalent) are attributed to the low weldability of the resistance spot welding of high strength steels. Improvement of the fracture mode and load carrying ability has been achieved with ferrite hardening and carbide formation during the paint baking process. The average nano-indentation hardness profile for each weld zone shows hardening of the base metal and softening of the heat affected zone (HAZ) and the weld metal, which proves that microstructural changes occur during low temperature heat treatment.

Resistance Spot Weldability of Surface Roughness Textured Galvannealed Steel Sheets (표면조도처리 된 합금화 용융아연도금강판의 저항 점 용접성)

  • Park, Sang-Soon;Kim, Ki-Hong;Kang, Nam-Hyun;Kim, Young-Seok;Rhym, Young-Mok;Choi, Yung-Min;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.8
    • /
    • pp.495-505
    • /
    • 2008
  • With the high proportion of zinc coated steels in body-in-white assembly, newly developed surface roughness textured galvannealed steel sheets have been introduced. In this study, zinc coated and surface roughness textured steel sheets were welded by resistance spot welding to investigate its weldability including electrode wear test. Based on the results of tensile-shear test, nugget diameter changes, and electrode tip growth test, it was clear that both surface roughness textured steels (GA-T and GA-E) showed good weldability. Also, there was no large difference in weldability and electrode wear behavior between GA-T and GA-E steels which have different surface roughness morphology. An analysis of electrode degradation showed Fe and Zn penetration through the electrode tip surface at 2400 welds reached $55{\sim}60{\mu}m$ and $75{\sim}80{\mu}m$, respectively. Therefore, there is no significant effect of surface roughness morphology on spot weldability of surface roughness textured galvannealed steel sheets. However, slight difference in thickness of alloying layers existing on electrode tip was found between GA-T and GA-E steels.

Evaluation of Resistance Spot Weld Interfacial Fractures in Tensile-Shear Tests of TRIP 590 Steels (저항 점 용접된 TRIP590강의 계면파단특성에 관한 평가)

  • Park, Sang-Soon;Lee, Sang-Min;Cho, Yongjoon;Kang, Nam-Hyun;Yu, Ji-Hun;Kim, Young-Seok;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.10
    • /
    • pp.672-682
    • /
    • 2008
  • The resistance spot welding of TRIP590 steels was investigated to enhance understanding of weld fracture during tensile-shear strength (TSS) test. The main failure modes for spot welds of TRIP590 steels were nugget pullout and interfacial fracture. The peak load to cause a weld interfacial failure was found to be related to fracture toughness of the weld and the weld diameter. Although interfacial fracture occurred in the samples, the load carrying capacity of the weld was high and not significantly affected by the fracture mode. Substantial part of the weld exhibits the characteristic dimple (or elongated dimple) fractures on interfacial fractured surface, in spite of the high hardness values associated with the martensite microstructures. The high load-bearing ability of the weld is directly associated with the area of ductile fracture occurred in weld. Therefore, the judgment of the quality of resistance spot welds in TRIP590 steels, the load carrying capacity of the weld should be considered as an important factor than fracture mode.

Study on material properties of $Cu-TiB_2$ nanocomposite ($Cu-TiB_2$ 나노 금속복합재의 물성치에 대한 연구)

  • Kim Ji-Soon;Chang Myung-Gyu;Yum Young-Jin
    • Composites Research
    • /
    • v.19 no.2
    • /
    • pp.28-34
    • /
    • 2006
  • [ $Cu-TiB_2$ ] metal matrix composites with various weight fractions of $TiB_2$ were fabricated by combination of manufacturing process, SPS (self-propagating high-temperature synthesis) and SPS (spark plasma sintering). The feasibility of $Cu-TiB_2$ composites for welding electrodes and sliding contact material was investigated through experiments on the tensile properties, hardness and wear resistance. To obtain desired properties of composites, composites are designed according to reinforcement's shape, size and volume fraction. Thus proper modeling is essential to predict the effective material properties. The elastic moduli of composites obtained by FEM and tensile test were compared with effective properties from the original Eshelby model, Eshelby model with Mori-Tanaka theory and rule-of-mixture. FEM result showed almost the same value as the experimental modulus and it was found that Eshelby model with Mori-Tanaka theory predicted effective modulus the best among the models.