• Title/Summary/Keyword: 전해물

Search Result 455, Processing Time 0.03 seconds

Diffusion Coefficient of Ag(I) ion in the Concentrated Nitric Acid Solution (고농도 질산용액에서 Ag(I) 이온의 확산계수 측정)

  • Park Sang Yoon;Choi Wang Kyu;Lee Kune Woo;Moon Jei Kwon;Oh Won Zin
    • Journal of the Korean Electrochemical Society
    • /
    • v.2 no.2
    • /
    • pp.93-97
    • /
    • 1999
  • From the anodic peak currents of cyclic voltammograms for Ag(I)/Ag(II) couple obtained with the variation of nitric acid concentration, Ag(I) concentration and solution temperature at a Pt electrode in concentrated nitric acid solutions, the diffusion coefficients of Ag(I) ion were evaluated to estimate the limiting current density of Ag(II)-mediated electrochemical oxidation (MEO) process, which has been effectively used for the complete destruction of hazardous organic materials. The results showed that, due to the water decomposition reaction which occurred simultaneously with the Ag(I) ion oxidation, background subtractions for the cyclic voltammograms were required to estimate the correct peak currents. The empirical relationship for the diffusion coefficient of Ag(I) was suggested as a function of solution viscosity and temperature.

반응성 스퍼터링에 의한 마이크로 박막 전지용 산화바나듐 박막의 제작 및 전기화학적 특성평가

  • 전은정;신영화;남상철;조원일;윤영수
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.49-49
    • /
    • 1999
  • 리튬 이차 전지를 박막화함으로써 개발된 고상의 마이크로 박막전지는 임의의 크기 및 형태로의 제작이 가능하며 액체전해질을 사용하지 않기 때문에 작동 중 열 또는 기체 생성물이 생기지 않아 높은 안정성을 갖으며 광범위한 사용 온도 범위를 가진다. 위와 같은 장점으로 인하여 충전 가능한 고상의 박막형 리튬 이차 전지는 점진적으로 그 사용 범위가 크게 확대될 것으로 판단된다. 즉, 초소형 전자, 전기 소자는 물론이며 조만간 실현될 스마트 카드, 셀루러폰 및 PCS와 같은 개인용 휴대 통신장비의 전력 공급계로의 응용이 가능할 것이다. 특히 장수명, 고에너지 밀도를 갖는 초소형의 전지를 필요로 하는 microelectronics, MEMS등에 이용될 수 있는 이차전지에 대한 요구가 점점 가시화 됨에 따라 박막공정을 이용한 이차전지개발기술이 요구되고 있으며, 박막제조기술을 이용한 고상의 박막형 및 전지에 관한 연구가 증가하고 있다. 본 연구에서는 박막형 리튬 이차전지의 Cathode 물질로써 비정질의 산화바나듐 박막을 반응성 스퍼터링에 의하여 상온에서 증착하였다. 박막형 이차전지의 여러 가지 Cathode 물질중 산화바나듐은 다른 물질들과는 달리 비정질 형태로 매우 우수한 충방전 특성을 나타낸다. 이런 특성으로 인해 다소 전지자체의 성능은 낮지만 저전력 저전압을 필요로 하는 초소형 전자 소자와 혼성되어 이용할 수 있는 잠재성이 매우 높은 물질이다. 바나듐 타겟의 경우 타겟 표면의 ageing에 따라 증착되는 박막의 특성이 매우 달라지게 되므로 presputtering의 시간을 변화시키면서 실험하였다. 또한 스퍼터링 중의 산소의 분압도 타겟의 ageing에 많은 영향을 주므로 실험 변수로 산소분압을 변화시키면서 실험하였다. 증착된 산화바나듐 박막의 표면은 scanning electron microscopy로 분석하였으며 구조 분석은 X-선 회절분석, X-ray photoelectron spectroscopy 그리고Auger electron spectroscope로 하였다. 증착된 산화바나듐 박막의 전기화학적 특성을 분석하기 위하여 리튬 메탈을 anode로 하고 EC:DMC=1:1, 1M LiPF6 액체 전해질을 사용한 Half-Cell를 구성하여 200회 이상의 정전류 충 방전 시험을 행하였다. Half-Cell test 결과 박막의 결정성과 표면상태에 따라 매우 다른 전지 특성을 나타내었다.

  • PDF

Selective Electrochemical Reduction on the Imino Group of ${\alpha},{\beta}$-Dibenzyl N-Benzylidene L-Aspartate (${\alpha},{\beta}$-Dibenzyl N-Benzylidene L-Aspartate 의 Imino 기에 대한 선택적 전해환원반응)

  • Kim, Il-Kwang;Kim, Youn-Geun;Lee, Young-Haeng;Chai, Kyu-Yun
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.614-622
    • /
    • 1989
  • The electrochemical reduction of ${\alpha},{\beta}$-dibenzyl N-benzylidene L-aspartate in 0.1M LiCl ethanol solution was investigated by direct current (DC), differential pulse (DP) polarography, cyclic voltammetry and controlled potential coulometry(CPC). The irreversible reductive amination of imino group proceeded to form ${\alpha},{\beta}$-dibenyl N-benzyl L-aspartate by CEC or CE electrochemical reaction mechanism at the first reduction step (-0.92 volts vs. Ag-AgCl). The polarographic reduction wave was slightly suppressed due to inhibitory effect of micelle, while the irreversibility was increased according to the increase of Triton X-100 concentration. Upon the basis of product analysis and polarogram interpretation with pH change, possible CE electrode reaction mechanism was suggested.

  • PDF

Preparation of Electrolytic Tungsten Oxide Thin Films as the Anode in Rechargeable Lithium Battery (리튬 이차전지용 텅스텐 산화물 전해 도금 박막 제조)

  • Lee, Jun-Woo;Choi, Woo-Sung;Shin, Heon-Cheol
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.680-686
    • /
    • 2013
  • Tungsten oxide films were prepared by an electrochemical deposition method for use as the anode in rechargeable lithium batteries. Continuous potentiostatic deposition of the film led to numerous cracks of the deposits while pulsed deposition significantly suppressed crack generation and film delamination. In particular, a crack-free dense tungsten oxide film with a thickness of ca. 210 nm was successfully created by pulsed deposition. The thickness of tungsten oxide was linearly proportional to deposition time. Compositional and structural analyses revealed that the as-prepared deposit was amorphous tungsten oxide and the heat treatment transformed it into crystalline triclinic tungsten oxide. Both the as-prepared and heat-treated samples reacted reversibly with lithium as the anode for rechargeable lithium batteries. Typical peaks for the conversion processes of tungsten oxides were observed in cyclic voltammograms, and the reversibility of the heat-treated sample exceeded that of the as-prepared one. Consistently, the cycling stability of the heat-treated sample proved to be much better than that of the as-prepared one in a galvanostatic charge/discharge experiment. These results demonstrate the feasibility of using electrolytic tungsten oxide films as the anode in rechargeable lithium batteries. However, further works are still needed to make a dense film with higher thickness and improved cycling stability for its practical use.

The Electrochemical Characteristics of 9-methyl-2,3,6,7-tetramethoxyfluorene in CH3CN and CH2Cl2/TFA/TFAn-solvent Mixture (CH3CN과 CH2Cl2/TFA/TFAn-혼합용매계에서의 9-methyl-2,3,6,7-tetramethoxyfluorene의 전기화학적 특성)

  • Kim, Duk-Hyun;Kim, Su-Jin
    • Applied Chemistry for Engineering
    • /
    • v.10 no.2
    • /
    • pp.196-200
    • /
    • 1999
  • The electrochemical properties of 9-methyl-2,3,6,7-tetramethoxyfluorene have been investigated by cyclic voltammetry in acetonitrile, dichloromethane, trifluoroacetic acid (TFA) and trifluoroacetic acid anhydride (TFAn). The first charge transfer for the compound in $CH_3CN$ appeared to be a quasi-reversible one-electron step. The second oxidation step from cation to dication was irreversible. However, the oxdition of the compound in a mixture of solvents containing $CH_2Cl_2$, TFA and TFAn was reversible for both the first and second charge transfer reactions. Since the electrolytic products display a darkblue color and can be stabilized in the solvent mixture, they may be used as an electrochromic material.

  • PDF

A Study on 1-Butene Oxidation over Vanadium Oxide Electrode (바나듐산화물 전극상에서 1-부텐의 산화반응 연구)

  • Park, Seungdoo;Lee, Hag-Young;Hong, Suk-In
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.523-528
    • /
    • 1998
  • The electrochemical characteristics of $V_2O_5$ as working electrode were studied in the cell (1-butene+$O_2$, $V_2O_5{\mid}YSZ{\mid}Ag$, $O_2$) with a YSZ solid electrolyte. The sintering of Ag as a counter electrode was occurred after calcination, and the structure which has the pores of over $3{\mu}m$ was achieved. In particular, the peak of (010) plane of the working electrode on the XRD spectrum which is responsible for selective oxidation appeared after calcination. The major product of 1-butene oxidation over $V_2O_5$ was butadiene. The technique of SEP (solid electrolyte potentiometry) was used to monitor the chemical potential of chemical species adsorbed on the working electrode. Over a wide range of gas compositions of 1-butene and oxygen, open circuit voltage (OCV) exhibited the mixed potential of surface oxygen activity.

  • PDF

Performance Enhancement and Recovery Method of Open Cathode PEMFC (오픈 캐소드형 고분자전해질 연료전지의 성능향상과 회복기법)

  • Lee, Kitaek;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.118-124
    • /
    • 2017
  • An air cooling, open cathode type polymer electrolyte membrane fuel cell (PEMFC) has the advantages of system simplification and cost effectiveness. Open cathode PEMFC could suffer from reduced performance due to the membrane dehydration in low humidity of air. Effects of the cathode air flow rate, anode purge interval and long term storage on PEMFC performance were investigated in this work. Fan voltage is an important factor on air cooling PEMFC performance because the cathode air flow rate and stack temperature were controlled by fan voltage. The dead ended anode (DEA) method was applied to increase hydrogen usage. Periodical purge was used to discharge accumulated water and gas. The influence of long term non-operating condition on PEMFC performance degradation due to the membrane dehydration was also studied and the quick recovery method was developed.

Electrochemical Characteristics of Hybrid Capacitor using Core-shell Structure of MCMB/Li4Ti5O12 Composite (Core-shell 구조의 MCMB/Li4Ti5O12 합성물을 사용한 하이브리드 커패시터의 전기화학적 특성)

  • Ko, Hyoung Shin;Choi, Jeong Eun;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.52-57
    • /
    • 2014
  • The MCMB-$Li_4Ti_5O_{12}$ with core-shell structure was prepared by sol-gel process to improve low cycle capability of MCMB in this study. The electrochemical characteristics were investigated for hybrid capacitor using MCMB-$Li_4Ti_5O_{12}$ as the negative electrode and $LiMn_2O_4$, Active carbon fiber as the positive electrode. The electrochemical behaviors of hybrid capacitor using organic electrolytes ($LiPF_6$, EC/DMC/EMC) were characterized by charge/discharge, cyclic voltammetry, cycle and impedance tests. The hybrid capacitor using MCMB-$Li_4Ti_5O_{12}/LiMn_2O_4$ electrodes had better capacitance than MCMB hybrid systems and was able to deliver a specific energy with 67 Wh/kg at a specific power of 781 W/kg.

The Electrochemical Property of the Single-Chamber Solid Oxide Fuel Cell Based on a Zirconia Electrolyte (지르코니아 전해질을 이용한 단실형 고체산화물 연료전지의 전기화학 특성)

  • Park, Hee Jung;Joo, Jong Hoon;Yang, Jae-Kyo;Jin, Yun Ho;Lee, Kyu Hyoung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.8
    • /
    • pp.510-515
    • /
    • 2016
  • Single-chamber solid oxide fuel cells (SC-SOFCs) consist of only one gas chamber, in which both the anode and the cathode are exposed to the same fuel-oxidant mixture. Thus, this configuration shows good thermal and mechanical resistance and allows rapid start-up and -down. In this study, the unit cell consisting of $La_{0.8}Sr_{0.2}MnO_3$ (cathode) / $Zr_{0.84}Y_{0.16}O_{2-x}$ (electrolyte) / $Ni-Zr_{0.84}Y_{0.16}O_{2-x}$ (anode) was fabricated and its electrochemical property was investigated as a function of temperature and the volume ratio of fuel and oxidant for SC-SOFCs. Impedance spectra were also investigated in order to figure out the electrical characteristics of the cell. As a result, the cell performance was governed by the polarization resistances of the electrodes. The cell exhibited an acceptable cell-performance of $86mW/cm^2$ at $800^{\circ}C$ and stable performance for 3 hs under 0.7 V.

A Study on the Electrochemical Characteristics of Biosensor with HRP Enzyme Immobilized on SPCE (SPCE에 HRP 효소가 고정화된 바이오센서의 전기화학적 특성에 관한 연구)

  • Han, Kyoung Ho;Lee, Dae Hyun;Yoon, Do Young;Choi, Sangil
    • Journal of the Korean Electrochemical Society
    • /
    • v.23 no.3
    • /
    • pp.73-80
    • /
    • 2020
  • Fenton oxidation method using hydrogen peroxide is an eco-friendly oxidation method used in water treatment and soil restoration. When removing pollutants by this method, it is quite important to properly regulate the concentration of hydrogen peroxide according to the concentration of the contaminants. In this study, electrochemical biosensors using HRP (horseradish peroxidase) enzymes were manufactured and studies were conducted on the activity of enzymes and the detection characteristics of hydrogen peroxide. HRP were electro deposited with chitosan and AuNP on the working electrode surface of the SPCE (Screen Printed Carbon Electrode). Then, the fixation of enzymes was confirmed using the cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The activity of HRP enzymes was also identified from chronoamperometry (CA) and UV spectroscopy. After immersing the biosensor in PBS solution the current generated from electrodes by titrating hydrogen peroxide was measured from CA analysis. The generated current increased linearly for the concentration of hydrogen peroxide, and a calibration curve was derived that could predict the concentration of hydrogen peroxide from the current.