Song, Shin Ae;Kang, Min Gu;Yoon, Sung Pil;Han, Jong Hee;Oh, In Hwan
한국신재생에너지학회:학술대회논문집
/
2010.06a
/
pp.133.2-133.2
/
2010
현재 융융탄산염 연료전지의 공기극으로 다공성의 lithiated NiO를 사용하고 있는데 이 재료의 경우 크게 두 가지의 문제점을 안고 있다. 첫 번째는 Ni이 전해질 내로 용해하는 것이고, 두 번째는 낮은 활성으로 인한 높은 공기극의 분극이다. Ni이 전해질로 용해되는 문제는 Co나 Fe를 코팅하여 공기극 표면에 $Li_x(Ni_yCo_{1-y})1-xO_2$나 $Li_x(Ni_yFe_{1-y})_{1-x}O_2$를 형성시켜 NiO의 전해질 내로 용해되는 것을 억제하는 방법이나 ZnO, MgO, $La_2O_3$ 등의 산화물을 NiO 표면에 코팅하여 전해질과 접촉을 막는 방식으로 해결하는 등 많은 연구가 이루어져 왔다. 하지만 연료극의 비해 상당히 높은 공기극의 분극으로 인해 큰 전압손실이 일어나 용융탄산염 연료전지 성능이 낮아지는 문제의 경우 이를 해결하고자 하는 연구는 상대적으로 많이 진행되지 못한 상태이다. 특히 현재 용융탄산염 연료전지의 장기수명화를 위해 기존의 작동온도인 $650^{\circ}C$ 보다 다소 낮은 온도인 $600{\sim}620^{\circ}C$에서 작동하려는 움직임이 있다. 작동 온도가 내려가면 전해질이 휘발되는 속도가 낮아져 전해질 부족에 따른 운전시간이 줄어드는 문제를 해결할 수 있어 장기 수명화를 위해서는 작동온도를 낮추는 것이 매우 유리하다. 하지만 작동 온도가 내려가면서 양 전극에서 일어나는 전기화학 반응 속도가 느려지기 때문에 각 전극에서의 활성화 분극으로 인한 전압손실은 더욱 커질 수밖에 없다. 특히 연료극의 수소산화반응 속도는 공기극의 산소환원반응에 비해 매우 빠르기 때문에 작동 온도가 내려감에 따라 연료극의 분극이 커지는 것에 비해 공기극의 분극이 급격히 커지게 된다. 따라서 운전온도가 낮아지는 상황에서는 낮은 작동온도에서도 성능감소가 적게 일어나 0.8V 이상 운전(150mA/$cm^2$, 단위전지 기준)이 가능한 공기극의 개발이 매우 필요한 실정이다. 이를 해결하고자 본 연구에서는 고체 산화물 연료전지의 공기극의 재료로 많이 연구되고 있는 혼합전도성 물질의 페로브스카이트 구조의 물질을 기존 NiO 전극에 코팅하여 새로운 공기극을 개발하였다. 페로브스카이트 구조의 물질로 대표적인 LSCF 물질을 사용하였으며 LSCF를 코팅한 공기극을 이용한 단위전지에서 150mA/$cm^2$의 전류를 흘려주었을 때 0.84V의 성능을 1000hr 유지하였다. 이는 기존의 NiO 전극을 사용했을 때보다 15~20mV 높은 값이다. 낮은 작동온도에서도 좋은 성능을 보였는데, 기존의 NiO 전극의 경우 $630^{\circ}C$에서 0.79V의 성능을 보인 반면 LSCF가 코팅된 공기극의 경우 $620^{\circ}C$에서 0.811V의 매우 좋은 성능을 보였다. 이는 LSCF의 산소이온전도성 및 전기전도성이 공기극에서의 분극을 낮추어 성능을 증가시키는 것으로 보인다.
The most important characteristic of the polymer electrolyte membranes (PEMs) for fuel cells, the proton conducting ability is mainly influenced by the distribution and morphology of the water channels inside the PEMs. Non-perfluorinated hydrocarbon PEMs are known to have weaker water channels than perfluorinated PEM, Nafion, and thus relatively low proton conducting ability. In this study, we used a mesoscale simulation technique to observe the water channel formation and phase separation behavior of hydrocarbon PEM, sulfonated polyimides, under the humidification condition. It was observed that the water molecules were distributed evenly through the entire hydrophilic region, and clear water clusters were formed only in the sulfonated polyimide having high sulfonation degree. In addition, it was observed that sulfonated polyimides have a difficulty in forming water channel under the low hydrated condition. These results clearly support the theories of the formation of water channels in non-perfluorinated hydrocarbon PEMs, and also well explain the tendency of proton conducting abilities of sulfonated polyimides. Thus, it is confirmed that mesoscale simulation techniques can be very effective in analyzing phase separation behavior and water channel formation in PEMs for fuel cells and elucidating the ion conducting abilities.
Kim, Jong-Hak;Koh, Jong-Kwan;Choi, Jin-Kyu;Yeon, Seung-Hyeon;Ahn, Ik-Sung;Park, Jin-Won
Membrane Journal
/
v.19
no.2
/
pp.96-103
/
2009
A series of organic-inorganic composite membranes from poly(vinyl chloride) (PVC) graft copolymer electrolyte and heteropolyacid (HPA) were prepared for proton conducting membranes. First, poly(vinyl chloride)-g-poly(styrene sulfonic acid) (PVC-g-PSSA) was synthesized by atom transfer radical polymerization (ATRP) using direct initiation of the secondary chlorines of PVC. HPA nanoparticles were then incorporated into the PVC-g-PSSA graft copolymer though the hydrogen bonding interactions, as confirmed by FT-IR spectroscopy. The proton conductivity of the composite membranes increased from 0.049 to 0.068 S/cm at room temperature with HPA contents up to 0.3 weight traction of HPA, presumably due to both the intrinsic conductivity of HPA particles and the enhanced acidity of the sulfonic acid of the graft copolymer. The water uptake decreased from 130 to 84% with the increase of HPA contents up to 0.45 of HPA weight traction, resulting from the decrease in number of water absorption sites due to hydrogen bonding interaction between the HPA particles and the polymer matrix. Thermal gravimetric analysis (TGA) demonstrated the enhancement of thermal stabilities of the composite membranes with increasing concentration of HPA.
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
/
v.8
no.1
/
pp.33-39
/
2010
The electrolytic reduction of a spent oxide fuel involves a liberation of the oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. Accordingly, it is essential to choose the optimum material for the processing equipment that handles the high molten salt. In this study, hot corrosion studies were performed on bare as well as coated superalloy specimens after exposure to lithium molten salt at $675^{\circ}C$ for 216 h under an oxidizing atmosphere. The IN713LC superalloy specimens were sprayed with an aluminized NiCrAlY bond coat and then with an $Y_2O_3$ top coat. The bare superalloy reveals an obvious weight loss due to spalling of the scale by the rapid scale growth and thermal stress. The chemical and thermal stability of the top coat has been found to be beneficial for increasing to the corrosion resistance of the structural materials for handling high temperature lithium molten salts.
Journal of the Korean Crystal Growth and Crystal Technology
/
v.24
no.2
/
pp.65-69
/
2014
Crystallographic phases of Plasma electrolytic oxidized Al alloy, A1100, A5052, A6061, A6063, A7075, were investigated. Two types of electrolyte $Na_2Si_2O_3$ and Na2P2O7 were also compared. Bipolar pulse, $2000{\mu}sec$ with $400{\mu}sec+420V$ impulse and $300{\mu}sec$ - impulse were applied for 20 min. ${\alpha}-alumina$, ${\gamma}-alumina$, ${\eta}-alumina$, $Al_{4.95}Si_{1.05}O_{9.52}$, and $(Al_{0.9}Cr_{0.1})_2O_3$ were mainly observed. Si, component of electrolyte, were moved into the PEO layer by bipolar pulse. Glassy phase was also observed at the surface of $Na_2Si_2O_3$ electrolyte treated PEO layer, and increased with the Mg content of Al alloy. It is concluded that at first glassy phase was formed by the micro plasma, and the high temperature of plasma turns glassy phase to several crystalline phases. And we could expect that many other crystalline phase could be formed by PEO process.
In order to estimate the possibility of applying electrolytes generally used in solid oxide fuel cells(SOFCs) to direct carbon fuel cells(DCFCs), properties of YSZ(yttria stabilized zirconia) electrolyte were evaluated. In this study, vacuum slurry coating method was adapted to coat thin layer on anode support substrate. After sintering the electrolyte at $1400^{\circ}C$ for 5hrs, microstructure was analyzed by using SEM image. Also, gas permeability and ionic conductivity were measured to find out the potential possibility of electrolyte for DCFCs. The YSZ electrolyte represented dense coating layer and low gas permeability value. The ionic conductivity of YSZ electrolyte was high over $800^{\circ}C$. After measurement of the electrolyte properties, direct carbon fuel cell was fabricated and its performance was measured at $800^{\circ}C$.
Silica- or titania-filled poly (vinylidene fluoride-co-hexafluoropropylene)-based polymer electrolytes were prepared by phase inversion technique using N-methyl-2-pyrrolidone and dimethyl acetamide as solvent and water as non-solvent. The polymer electrolytes were adopted to the lithium metal polymer battery using high-capacity cathode $Li[Ni_{0.15}Co_{0.10}Li_{0.20}Mn_{0.55}]O_2$ and lithium metal anode. After the repeated charge-discharge test for the cell, it was proved that the cell adopting the polymer electrolyte based on the phase-inversion membrane containing 40~50 wt% silica showed the highest discharge capacity (180 mAh/g) until 80th cycle and then abrupt capacity fade was just followed. The capacity fade might be due to the deposition of lithium dendrite on the polymer electrolyte, in which the capacity retention was no longer sustainable.
The formation of niobium oxide microcones on niobium substrates was investigated in NaF to the HF electrolytes. This condition builds on the uniqueness of the microstructures niobium oxide. The dimensions and integrity of the bulk microstructures were found to be strongly dependent on potential, temperature, electrolyte composition, and anodization time. The anodic oxide was initially amorphous at all temperatures, but crystalline oxide nucleated during anodization. From XRD patterns of the anodized specimens, the microcones consisted of crystalline $Nb_2O_5$. We demonstrated niobium oxide microcone structures with nanorods. The anodized niobium oxide microcone texture revealed nanorod bundles. The surface of $Nb_2O_5$ microcones is very regular and has a nano-scale. The surface morphologies of the nanorods were examined using FE-SEM. EDS analyses show that the anodically prepared niobium oxide consists of $Nb_2O_5$. The aim of this study is to find the condition of forming the favorable nanorods by anodization method.
This review article summarizes photoelectrochemical water splitting using gallium nitride (GaN). GaN materials have been studied as novel photoelectrode material due to its chemical stability and easy band gap engineering. Unlike other semiconductor materials that are easily corroded in strongly acidic or alkaline electrolyte, n-type GaN is chemically stable enough to be used as photoanode in oxygen evolution reaction. Furthermore, studies on p-type GaN have been recently reported. This review briefly discusses problems that need to be solved before GaN materials find widespread use in solar fuel application.
Park, Sungho;Kal, Hanjoo;Jeong, Youngsik;Lee, Sanghoon;Lee, Jaejun;Oh, Yongmin;Kim, Seonhwa
한국신재생에너지학회:학술대회논문집
/
2011.05a
/
pp.97.2-97.2
/
2011
본 연구는 연료전지 중 용융탄산염을 전해질로 하는 MCFC의 MBOP에 포함된 부품으로 매우 중요한 역할을 하는 가습기와 이때 발생되는 폐열을 회수하기 위한 장치인 HRU에 관한 것이다. 가습기는 연료와 물이 가습기 상부로 유입되어 가습기 하부로 유입되는 배가스와 열교환을 하면서 물이 스팀화 되어 연료가 가습된 상태로 가습기 출구로 일정온도를 유지하며 배출된다. 또한 HRU는 가습기에서 배출된 고온의 배가스를 물을 이용하여 열교환을 통해서 열을 회수하여 난방 및 온수로 사용할 수 있는 열교환 장치를 말한다. 먼저 이들의 특성을 파악하기 위해 가습기 및 HRU를 설계, 제작하여 각각의 특성을 확인하였다. 가습기와 HRU의 성능 향상을 위해 먼저 열교환부에 적용될 튜브의 수치해석적 분석을 통해서 최적의 열전달 성능을 얻을 수 있는 가습기 및 HRU를 설계, 제작하였으며 이들의 성능을 파악하기 위해 120,000kcal/h 용량을 테스트 할 수 있는 장치를 구축하여, 이들의 열전달 특성, 압력강하, 회수 열량, 가습기 온도 등의 특성을 파악하였다. 이 장치를 통해서 확인된 가습기와 HRU의 특성은 수치해석을 통해서 얻은 값과 거의 유사함을 확인할 수 있었으며, 가습 성능도 효과적으로 달성할 수 있었다. 가습기와 HRU의 특성 중 압력강하 부분은 지속적인 연구가 필요한 부분이며, 가습기와 HRU의 일체화를 통하여 소형화 및 설치공간 축소 효과를 얻을 것으로 본다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.