• 제목/요약/키워드: 전하 전달 저항

검색결과 28건 처리시간 0.021초

리튬 망간산화물 박막에서의 전극 반응의 개선 (Improvement of Electrochemical Reaction Kinetics in Lithium Manganese Oxide Thin Films)

  • 박영신;김찬수;주승기
    • 전기화학회지
    • /
    • 제3권2호
    • /
    • pp.96-99
    • /
    • 2000
  • 리튬 망간 산화물 박막의 고율 방전 특성을 향상시키기 위하여 사진 식각 법을 이용하여 미세 패턴된 양극 박막을 제조하였다. 방전 전류 밀도를 달리하여 측정한 결과, 리튬 이온의 intercalations kinetic레 관계하는 전하 전달 저항 값이 감소하게 되어 고율 방전 특성이 향상되었다.

PEMFC에서 전극의 CO 내성 및 막 내구성에 미치는 Ru/C 촉매의 영향 (Effects of Ru/C Catalyst on the CO Tolerance of Anode and Durability of Membrane in PEMFC)

  • 심우종;김동환;최서희;김기중;안호근;정민철;박권필
    • Korean Chemical Engineering Research
    • /
    • 제46권2호
    • /
    • pp.286-290
    • /
    • 2008
  • 고분자전해질 연료전지는 $60{\sim}80^{\circ}C$ 운전 온도에서 개질 가스에 약간의 일산화탄소만 있어도 백금 표면에 CO가 강하게 흡착하여 촉매기능을 방해한다. 본 연구에서는 일산화탄소를 산화시키기 위해 Ru/C 층(CO 필터)을 Pt/C 층과 가스 확산층(GDL) 사이에 위치 시켰다. Ru/C 필터는 PEMFC anode가 좋은 CO 내성을 갖게 했으나 Ru/C 필터 두께로 인한 물질전달 저항과 전하 전달 저항증가에 의한 단위전지 성능저하가 0.6 V에서 약 10% 있었다. 고분자막의 열화는 PEMFC 수명을 단축시키는 주요 원인이 되고 있다. 막 내구성은 전극의 촉매 종류에 영향을 받을 수 있다. 가속실험결과 Ru/C 촉매가 불소유출 속도를 향상시킴을 보임으로써 Ru/C 촉매 첨가가 PEMFC 수명을 단축시킬 수 있음을 보였다.

동작속도가 빠른 Mo2N/Mo 게이트 MOS 집적회로 (High Speed Mo2N/Mogate MOS Integrated Circuit)

  • 김진섭;이우일
    • 대한전자공학회논문지
    • /
    • 제22권4호
    • /
    • pp.76-83
    • /
    • 1985
  • RMOS(refractory metal oxide semiconductor)의 게이트와 집적회로의 각 소자나 회로를 연결하는 연결선으로 사용되는 Mo2N/Mo 이중층을 Ar과 N2의 혼합가스 분위기에서 저온의 고주파 반응성스펏터링으로 형성하였다. 1000Å-Mo2N/4000Å-Mo이중층의 면저항은 약 1.20∼1.28Ω/구로서 다결정실리콘의 약 1/10정도가 되었다. C-V측정으로부터 Mo2N/Mo이중층과 비저항이 6∼9Ω·㎝이고 결정면이 (100)인 P형 Si과의 일함수차 f%5는 약 -0.30ev 및 산화층에 존재하는 고정전하밀도 Qss/q는 약 2.1x1011/cm를 얻었다. 인버터 한개당의 신호전달 지연시간을 측정하기 위해 다결정실리콘게이트 NMOS 제조공정을 웅용하여 45개의 인버터로 구성된 ring oscillator를 제작하였다. 본 실험에서 얻을 수 있었던 인버터 한개에 대한 신호전달지연시간은 약 0.8nsec였다.

  • PDF

전기이중층 캐패시터 전극용 meso-pore구조의 미소구형 활성탄소 제조 (Preparation of Micro-spherical Activated Carbon with Meso-porous Structure for the Electrode Materials of Electric Double Layer Capacitor)

  • 엄의흠;이철태
    • 공업화학
    • /
    • 제20권4호
    • /
    • pp.396-401
    • /
    • 2009
  • 전기이중층 캐패시터의 성능향상을 위한 전극물질로서 resorcinol-formaldehyde수지를 탄소원으로 사용하여 meso-pore 비율 52~64%의 기공특성을 지니며 직경 $2{\sim}10{\mu}m$의 미세구형 활성탄을 제조하였다. 이 활성탄을 전기이중층에 적용한 결과, meso-pore구조의 미세구형활성탄은 전하전달저항의 저감 및 충방전율 수용능력 향상에 효과적인 영향을 나타내어 전기이중층 캐패시터의 성능향상을 위한 효과적인 전극물질이 될 수 있음을 확인할 수 있었다.

A Simulated Prediction for Influences of Operating Condition in an Alkaline Fuel Cell

  • Jo Jang-Ho;Yi Sung-Chul
    • 전기화학회지
    • /
    • 제2권3호
    • /
    • pp.163-170
    • /
    • 1999
  • AFC 단전지에서 운전조건의 영향은 이제까지 자세히 연구된 바 없다. 본 연구에서는 초기 전해질 농도와 가스 운전압력의 영향을 살펴보기 위하여 1차원 등온 모델을 이용해 전산모사를 수행하였다. 결과에 의하면, base-case에서 최적 전해질 농도는 $3.0\~3.5M$사이에 있는 것으로 발견되었다. 전해질 농도에 따른 전지 성능의 변화는 주로 양쪽 전극의 전하전달 저항과 용해된 기체의 헨리상수 및 액상확산이 원인인 것으로 밝혀졌다. 또한, 운전 압력의 증가는 반응속도와 가스의 용해도를 증가시켰으며, 이것으로 인해 전지 성능이 상당히 향상되는 것으로 조사되었다

수소화 붕소 나트륨 (NaBH4) 과 이산화탄소의 환원을 이용한 바나듐 레독스 흐름전지용 탄소 촉매 개발 (Development of Boron Doped Carbon Using CO2 Reduction with NaBH4 for Vanadium Redox Flow Battery)

  • 한만호;김한성
    • 전기화학회지
    • /
    • 제21권1호
    • /
    • pp.1-5
    • /
    • 2018
  • 본 연구에서는 수소화 붕소 나트륨 ($NaBH_4$)를 이용하여 고온에서 이산화탄소 ($CO_2$)를 환원시켜 붕소가 도핑된 카본을 제조하였고, 이를 카본 펠트에 코팅하여 바나듐 레독스 흐름전지용 전극으로 적용하였다. 전기화학적 성능 평가 결과, 순수 카본펠트 대비 붕소 도핑된 카본으로 코팅된 카본펠트의 가역성이 약 20% 향상되었고 전하 전달 저항이 60% 감소하였다. 충/방전 결과에서는, 에너지 밀도와 에너지 효율이 각각 21%와 12.4% 향상되었다. 이러한 결과는 $CO_2$를 환원시켜 제조한 탄소가 레독스 흐름전지용 전극소재로 사용될 수 있는 가능성을 보여준다.

정전위 전해 중합법에 의한 폴리피롤 제조 및 전기화학적 특성 (Preparations and Electrochemical Characteristics of Polypyrrole by Constant Potential Electroplymerization)

  • 조승구;심철호
    • 전기화학회지
    • /
    • 제8권2호
    • /
    • pp.99-105
    • /
    • 2005
  • 본 연구에서는 정전위 전해중합법으로 음이온 크기가 다른 도펀트를 사용하여 폴리피를 전극을 제조하였으며, CV 및 교류 임피던스법을 이용한 전기화학적 분석 및 형태학적 분석을 통해 제조된 폴리피롤 전극의 특성을 고찰하였다. 제조된 전극을 전기화학적으로 분석한 결과 $PPy/CLO_4$전극은 음이온의 도핑$\cdot$탈도핑이, PPy/PVS 전극은 양이온의 탈도핑$\cdot$도핑이 일어나고 있음을 알았다. 합성 전위가 증가할수록 $PPy/CLO_4$ 전극과 PPy/PVS 전극 모두 전하전달저항은 감소하였고, 이중층 용량은 $PPy/CLO_4$전극이 PPy/PVS 보다 큼을 알 수 있었다. 합성 전위 변화에 따른 PPy/PVS 전극 표면의 변화는 상대적으로 $PPy/CLO_4$ 보다 작음을 알 수 있었다

CNT와 CNF 복합첨가에 따른 Si/SiO2/C 음극활물질의 전기화학적 특성 (Electrochemical Characteristics of Si/SiO2/C Anode Material for Lithium-Ion Battery According to Addition of CNT and CNF Compounds)

  • 서진성;윤상효;나병기
    • Korean Chemical Engineering Research
    • /
    • 제59권1호
    • /
    • pp.35-41
    • /
    • 2021
  • 차세대 리튬이차전지용 음극활물질로 각광을 받고 있는 실리콘은 높은 이론용량을 가지고 있어 상용화를 하기 위해 많은 연구가 진행되었다. 하지만 실리콘은 충방전시 부피팽창이 심하고, 전기전도도가 낮은 단점을 가지고 있다. 이러한 문제를 해결하기 위해서 실리콘 표면에 SiO2를 형성시키고, 탄소를 코팅함으로써 실리콘의 부반응을 억제시키고 전기전도도를 향상시켰다. 추가적으로 CNF와 CNT를 복합적으로 첨가하여 부피팽창에 대한 완충효과를 부여하고 전기전도도를 향상시켰다. 제조된 샘플은 XRD, SEM, EDS로 물리적 특성 분석을 실시하였으며, 전기화학적 특성은 전기전도도, EIS, CV 그리고 사이클 테스트를 통해 분석하였다. (Si/SiO2/C)+CNT&CNF 복합체의 경우 다른 샘플들에 비하여 높은 전기전도도 및 낮은 전하전달저항을 보여주었으며, 사이클테스트 결과 첫 번째 사이클에서 1528 mAh/g 그리고 50번째 사이클에서 1055 mAh/g의 용량을 가졌으며 83%의 용량 유지율을 보여주었다.

전기화학 증착법을 이용한 그래핀 개질 Indium Tin Oxide 전극 제작 및 효소 전극에 응용 (Fabrication of Graphene-modified Indium Tin Oxide Electrode Using Electrochemical Deposition Method and Its Application to Enzyme Electrode)

  • 왕설;시키;김창준
    • Korean Chemical Engineering Research
    • /
    • 제60권1호
    • /
    • pp.62-69
    • /
    • 2022
  • 그래핀은 부피에 비해 표면적이 넓고 뛰어난 기계적 물성과 전기전도성을 가지며 생체적합성이 우수하다. 본 연구에서는 전기화학적 방법을 이용하여 indium tin oxide (ITO) 글래스 슬라이드 표면에 산화그래핀을 증착·환원시킨 전극을 제작하였고 그래핀으로 표면 개질된 ITO의 전기화학적 특성을 조사하였다. 산화그래핀의 증착과 환원에 순환전압전류법을 사용하였다. 주사전자현미경과 에너지 분산형 X-선 분광법을 사용하여 그래핀이 코팅된 ITO 표면을 관찰하였다. 순환전압전류법과 전기화학 임피던스 분광법을 사용하여 제작된 전극들의 전기화학 특성을 평가하였다. 사이클 수와 주사 속도는 산화그래핀 증착과 환원도에 상당한 영향을 미쳤으며 제작된 전극의 전기화학 특성도 달랐다. ITO 전극에 비하여 그래핀으로 표면 개질된 ITO는 전극 계면에서의 전하 전달 저항이 낮았고 더 많은 전류를 생산하였다. 그래핀으로 표면 개질된 ITO 표면에 고정화된 포도당 산화효소는 포도당을 산화시키며 성공적으로 전자들을 생성하였다.

PtCo/C 촉매를 사용한 PEMFC MEA의 활성화 프로토콜 비교 (The Comparison of Activation Protocols for PEMFC MEA with PtCo/C Catalyst)

  • 이기성;정현승;현진호;박찬호
    • 한국수소및신에너지학회논문집
    • /
    • 제34권2호
    • /
    • pp.178-186
    • /
    • 2023
  • Three activation methods (constant voltage, current cycling, and hydrogen pumping) were applied to investigate the effects on the performance of the membrane electrode assembly (MEA) loaded with PtCo/C catalyst. The current cycling protocol took the shortest time to activate the MEA, while the performance after activation was the worst among the all activation methods. The constant voltage method took a moderate activation time and exhibited the best performance after activation. The hydrogen pumping protocol took the longest time to activate the MEA with moderate performance after activation. According to the distribution of relaxation time analysis, the improved performance after the activation mainly comes from the decrease of charge transfer resistance rather than the ionic resistance in the cathode catalyst layer, which suggests that the existence of water on the electrode is the key factor for activation.