DOI QR코드

DOI QR Code

Development of Boron Doped Carbon Using CO2 Reduction with NaBH4 for Vanadium Redox Flow Battery

수소화 붕소 나트륨 (NaBH4) 과 이산화탄소의 환원을 이용한 바나듐 레독스 흐름전지용 탄소 촉매 개발

  • Han, Manho (Dept. of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Hansung (Dept. of Chemical and Biomolecular Engineering, Yonsei University)
  • 한만호 (연세대학교 화공생명공학과) ;
  • 김한성 (연세대학교 화공생명공학과)
  • Received : 2017.12.20
  • Accepted : 2018.01.31
  • Published : 2018.02.28

Abstract

In this study, boron - doped carbon was prepared by reducing carbon dioxide ($CO_2$) at high temperature by using sodium borohydride ($NaBH_4$). The boron - doped carbon was coated on carbon felt and applied as an electrode for a vanadium redox battery cell. As a result of electrochemical performance evaluation, reversibility of carbon felt coated with boron doped carbon compared to pure carbon felt was improved by about 20% and charge transfer resistance was reduced by 60%. In the charge / discharge results, energy density and energy efficiency were improved by 21% and 12.4%, respectively. These results show that carbon produced by reduction of $CO_2$ can be used as electrode material for redox flow battery.

본 연구에서는 수소화 붕소 나트륨 ($NaBH_4$)를 이용하여 고온에서 이산화탄소 ($CO_2$)를 환원시켜 붕소가 도핑된 카본을 제조하였고, 이를 카본 펠트에 코팅하여 바나듐 레독스 흐름전지용 전극으로 적용하였다. 전기화학적 성능 평가 결과, 순수 카본펠트 대비 붕소 도핑된 카본으로 코팅된 카본펠트의 가역성이 약 20% 향상되었고 전하 전달 저항이 60% 감소하였다. 충/방전 결과에서는, 에너지 밀도와 에너지 효율이 각각 21%와 12.4% 향상되었다. 이러한 결과는 $CO_2$를 환원시켜 제조한 탄소가 레독스 흐름전지용 전극소재로 사용될 수 있는 가능성을 보여준다.

Keywords

References

  1. Z. Mai, H. Zhang, X. Li, S. Xiao, H. Zhang, 'Nafion/ polyvinylidene fluoride blend membranes with improved ion selectivity for vanadium redox flow battery application' Journal of Power Sources, 196, 5737 (2011). https://doi.org/10.1016/j.jpowsour.2011.02.048
  2. K. J. Kim, Y. -J. Kim, J. -H. Kim and M. -S. Park, 'The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries' Materials Chemsitry and Physics, 131, 547, (2011). https://doi.org/10.1016/j.matchemphys.2011.10.022
  3. Z. Gonzalez, C. Botas, P. Alvarez, S. Roldan, C. Blanco, R. Santamaria, M. Granda and R. Menendez, 'Thermally reduced graphite oxide as positive electrode in Vanadium Redox Flow Batteries' Carbon, 50, 828 (2012). https://doi.org/10.1016/j.carbon.2011.09.041
  4. X. Wu, H. Wu, P. Xu, Y. Shen, L. Lu, J. Shi, J. Fu and H. Zhao, 'Microwavet reated graphite felt as the positive electrode for all-v anadium redox flow battery' Journal of Power Sources, 263, 104 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.035
  5. W. Zhang, J. Xi, Z. Li, H. Zhou, L. Liu, Z. Wu and X. Qiu, 'Electrochemical mass transport studied by probe beam deflection: potential step experiments' Electrochim Acta, 37, 429 (2013).
  6. B. Sun and M. Skyllas-Kazacos, 'Modification of graphite electrode materials for vanadium redox flow battery application-I. Thermal treatment' Electrochimica Acta, 37, 1253 (1992). https://doi.org/10.1016/0013-4686(92)85064-R
  7. D. Ha, S.-K. Kim, D. Jung, S. Lim, D. -H. Peck, B. Lee and K. L, 'Effect of Carbon Felt Oxidation Methods on the Electrode Performance of Vanadium Redox Flow Battery' Journal of the Korean Electrochemical Society, 12, 263 (2009). https://doi.org/10.5229/JKES.2009.12.3.263
  8. B. Sun and M. Skyllas-Kazacos, 'Chemical modification of graphite electrode materials for vanadium redox flow battery application-part II. Acid treatments' Electrochimica Acta, 37, 2459 (1992). https://doi.org/10.1016/0013-4686(92)87084-D
  9. J. Jin, X. Fu, Q. Liu, Y. Lin, Z. Wei, K. Niu and J. Zhang, 'Identifying the Active Site in Nitrogen-Doped Graphene for the $VO^{2+}$/TEX>$VO^{2+}$ Redox Reaction' ACS nano, 7, 4764 (2013). https://doi.org/10.1021/nn3046709
  10. X. -G. Li, K. -L. Huang, S. -Q. Liu, N. Tan and L. -Q. Chen, 'Characteristics of graphite felt electrode electrochemically oxidized for vanadium redox battery application' Transactions of Nonferrous Metals Society of China, 17, 195 (2007). https://doi.org/10.1016/S1003-6326(07)60071-5
  11. Y. Shao, X. Wang, M. Engelhard, C. Wang, S. Dai, J. Liu, Z. Yang and Y. Lin, 'Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries' Journal of Power Sources, 195, 4375 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.015
  12. H. Lee and H. Kim, 'Development of nitrogen-doped carbons using the hydrothermalmethod as electrode materials for vanadium redox flow batteries' Journal of Applied Electrochemistry, 43, 553 (2013). https://doi.org/10.1007/s10800-013-0539-0
  13. L. Shi, S. Liu, Z. He and J. Shen, 'Nitrogen-Doped Graphene:Effects of nitrogen species on the properties of the vanadium redox flow battery' Electrochim Acta, 138, 93 (2014). https://doi.org/10.1016/j.electacta.2014.06.099
  14. S. Wang, X. Zhao, T. Cochell, and A. Manthiram, 'Nitrogen-Doped Carbon Nanotube/Graphite Felts as Advanced Electrode Materials for Vanadium Redox Flow Batteries' The Journal of Physical Chemistry Letters, 3, 2164 (2012). https://doi.org/10.1021/jz3008744
  15. C. Flox, J. Rubio-Garcia, M. Skoumal, T. Andreu, and J. R. Morante, 'Thermo-chemical treatments based on $NH_3/O_2 $ for improved graphite-based fiber electrodes in vanadium redox flow batteries' Carbon, 60, 280 (2013). https://doi.org/10.1016/j.carbon.2013.04.038
  16. T. Wu, K. Huang, S. Liu, S. Zhang, D. Fang, S. Li, D. Lu and A. Su, 'Hydrothermal ammoniated treatment of PAN-graphite felt for vanadium redox flow battery' Journal of Solid State Electrochemistry, 16, 579 (2011).
  17. H. Lee, H. Kim, 'Graphite Felt Coated with Dopamine-Derived Nitrogen-Doped Carbon as a Positive Electrode for a Vanadium Redox Flow Battery' Journal of The Electrochemical Society, 162 (8) A1675 (2015) https://doi.org/10.1149/2.0081509jes
  18. S. Park, H. Kim, 'Fabrication of nitrogen-doped graphite felts as positive electrodes using polypyrrole as a coating agent in vanadium redox flow batteries' J. Mater. Chem. A, 3, 12276 (2015). https://doi.org/10.1039/C5TA02674A
  19. M. Park, J. Ryu, Y. Kim and J. Cho, 'Corn proteinderived nitrogen-doped carbon materials with oxygenrich functional groups: a highly efficient electrocatalyst for all-vanadium redox flow batteries' Energy & Environmental Science, 7, 3727 (2014). https://doi.org/10.1039/C4EE02123A
  20. J. Ryu, M. Park, J. Cho, 'Catalytic Effects of B/N-co-Doped Porous Carbon Incorporated with Ketjenblack Nanoparticles for All-Vanadium Redox FlowBatteries' Journal of The Electrochemical Society, 163, A5144 (2016).
  21. J. Zhang, A. Byeon, J. Lee, 'Boron-doped electrocatalysts derived from carbon dioxide' JMCA, 1, 8665 (2013). https://doi.org/10.1039/c3ta11248a
  22. J. Zhang, J. Lee, 'Production of boron-doped porous carbon by the reaction of carbon dioxide with sodium borohydride at atmospheric pressure' CARBON, 53, 216 (2013). https://doi.org/10.1016/j.carbon.2012.10.051
  23. Z. Lei, H. Chen, M. Yang, D. Yang, H. Li, 'Boron and oxygen-codoped porous carbon as efficient oxygen reduction catalysts' Applied surface science, 426, 294 (2017). https://doi.org/10.1016/j.apsusc.2017.07.183
  24. B. Ottaviani, A. Derre, E. Grivei, O. A. M. Mahmoud, M. -F. Guimon, S. Flandrois, P. Delhaes, 'Boronated carbons: structural characterization and low temperature physical properties of disordered solids' J. Mater. Chem., 8, 197 (1998). https://doi.org/10.1039/a703625f