References
- Z. Mai, H. Zhang, X. Li, S. Xiao, H. Zhang, 'Nafion/ polyvinylidene fluoride blend membranes with improved ion selectivity for vanadium redox flow battery application' Journal of Power Sources, 196, 5737 (2011). https://doi.org/10.1016/j.jpowsour.2011.02.048
- K. J. Kim, Y. -J. Kim, J. -H. Kim and M. -S. Park, 'The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries' Materials Chemsitry and Physics, 131, 547, (2011). https://doi.org/10.1016/j.matchemphys.2011.10.022
- Z. Gonzalez, C. Botas, P. Alvarez, S. Roldan, C. Blanco, R. Santamaria, M. Granda and R. Menendez, 'Thermally reduced graphite oxide as positive electrode in Vanadium Redox Flow Batteries' Carbon, 50, 828 (2012). https://doi.org/10.1016/j.carbon.2011.09.041
- X. Wu, H. Wu, P. Xu, Y. Shen, L. Lu, J. Shi, J. Fu and H. Zhao, 'Microwavet reated graphite felt as the positive electrode for all-v anadium redox flow battery' Journal of Power Sources, 263, 104 (2014). https://doi.org/10.1016/j.jpowsour.2014.04.035
- W. Zhang, J. Xi, Z. Li, H. Zhou, L. Liu, Z. Wu and X. Qiu, 'Electrochemical mass transport studied by probe beam deflection: potential step experiments' Electrochim Acta, 37, 429 (2013).
- B. Sun and M. Skyllas-Kazacos, 'Modification of graphite electrode materials for vanadium redox flow battery application-I. Thermal treatment' Electrochimica Acta, 37, 1253 (1992). https://doi.org/10.1016/0013-4686(92)85064-R
- D. Ha, S.-K. Kim, D. Jung, S. Lim, D. -H. Peck, B. Lee and K. L, 'Effect of Carbon Felt Oxidation Methods on the Electrode Performance of Vanadium Redox Flow Battery' Journal of the Korean Electrochemical Society, 12, 263 (2009). https://doi.org/10.5229/JKES.2009.12.3.263
- B. Sun and M. Skyllas-Kazacos, 'Chemical modification of graphite electrode materials for vanadium redox flow battery application-part II. Acid treatments' Electrochimica Acta, 37, 2459 (1992). https://doi.org/10.1016/0013-4686(92)87084-D
-
J. Jin, X. Fu, Q. Liu, Y. Lin, Z. Wei, K. Niu and J. Zhang, 'Identifying the Active Site in Nitrogen-Doped Graphene for the
$VO^{2+}$ /TEX>$VO^{2+}$ Redox Reaction' ACS nano, 7, 4764 (2013). https://doi.org/10.1021/nn3046709 - X. -G. Li, K. -L. Huang, S. -Q. Liu, N. Tan and L. -Q. Chen, 'Characteristics of graphite felt electrode electrochemically oxidized for vanadium redox battery application' Transactions of Nonferrous Metals Society of China, 17, 195 (2007). https://doi.org/10.1016/S1003-6326(07)60071-5
- Y. Shao, X. Wang, M. Engelhard, C. Wang, S. Dai, J. Liu, Z. Yang and Y. Lin, 'Nitrogen-doped mesoporous carbon for energy storage in vanadium redox flow batteries' Journal of Power Sources, 195, 4375 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.015
- H. Lee and H. Kim, 'Development of nitrogen-doped carbons using the hydrothermalmethod as electrode materials for vanadium redox flow batteries' Journal of Applied Electrochemistry, 43, 553 (2013). https://doi.org/10.1007/s10800-013-0539-0
- L. Shi, S. Liu, Z. He and J. Shen, 'Nitrogen-Doped Graphene:Effects of nitrogen species on the properties of the vanadium redox flow battery' Electrochim Acta, 138, 93 (2014). https://doi.org/10.1016/j.electacta.2014.06.099
- S. Wang, X. Zhao, T. Cochell, and A. Manthiram, 'Nitrogen-Doped Carbon Nanotube/Graphite Felts as Advanced Electrode Materials for Vanadium Redox Flow Batteries' The Journal of Physical Chemistry Letters, 3, 2164 (2012). https://doi.org/10.1021/jz3008744
-
C. Flox, J. Rubio-Garcia, M. Skoumal, T. Andreu, and J. R. Morante, 'Thermo-chemical treatments based on
$NH_3/O_2 $ for improved graphite-based fiber electrodes in vanadium redox flow batteries' Carbon, 60, 280 (2013). https://doi.org/10.1016/j.carbon.2013.04.038 - T. Wu, K. Huang, S. Liu, S. Zhang, D. Fang, S. Li, D. Lu and A. Su, 'Hydrothermal ammoniated treatment of PAN-graphite felt for vanadium redox flow battery' Journal of Solid State Electrochemistry, 16, 579 (2011).
- H. Lee, H. Kim, 'Graphite Felt Coated with Dopamine-Derived Nitrogen-Doped Carbon as a Positive Electrode for a Vanadium Redox Flow Battery' Journal of The Electrochemical Society, 162 (8) A1675 (2015) https://doi.org/10.1149/2.0081509jes
- S. Park, H. Kim, 'Fabrication of nitrogen-doped graphite felts as positive electrodes using polypyrrole as a coating agent in vanadium redox flow batteries' J. Mater. Chem. A, 3, 12276 (2015). https://doi.org/10.1039/C5TA02674A
- M. Park, J. Ryu, Y. Kim and J. Cho, 'Corn proteinderived nitrogen-doped carbon materials with oxygenrich functional groups: a highly efficient electrocatalyst for all-vanadium redox flow batteries' Energy & Environmental Science, 7, 3727 (2014). https://doi.org/10.1039/C4EE02123A
- J. Ryu, M. Park, J. Cho, 'Catalytic Effects of B/N-co-Doped Porous Carbon Incorporated with Ketjenblack Nanoparticles for All-Vanadium Redox FlowBatteries' Journal of The Electrochemical Society, 163, A5144 (2016).
- J. Zhang, A. Byeon, J. Lee, 'Boron-doped electrocatalysts derived from carbon dioxide' JMCA, 1, 8665 (2013). https://doi.org/10.1039/c3ta11248a
- J. Zhang, J. Lee, 'Production of boron-doped porous carbon by the reaction of carbon dioxide with sodium borohydride at atmospheric pressure' CARBON, 53, 216 (2013). https://doi.org/10.1016/j.carbon.2012.10.051
- Z. Lei, H. Chen, M. Yang, D. Yang, H. Li, 'Boron and oxygen-codoped porous carbon as efficient oxygen reduction catalysts' Applied surface science, 426, 294 (2017). https://doi.org/10.1016/j.apsusc.2017.07.183
- B. Ottaviani, A. Derre, E. Grivei, O. A. M. Mahmoud, M. -F. Guimon, S. Flandrois, P. Delhaes, 'Boronated carbons: structural characterization and low temperature physical properties of disordered solids' J. Mater. Chem., 8, 197 (1998). https://doi.org/10.1039/a703625f