Journal of the Institute of Electronics Engineers of Korea SC
/
v.43
no.6
s.312
/
pp.68-75
/
2006
During cancer therapy by using high energy radiation, it is possible to improve the radiation therapy efficiency by performing a precise radiation therapy after verification of generated setup errors. In this paper, the video based electronic portal imaging device (EPID) which could display the portal image with near real time was developed to verify treatment position errors in radiation therapy instead of an analog typed portal film. This EPID system for applying QA tool of radiation therapy machine was consisted of a metal/fluorescent screen, $45^{\circ}$mirror, camera and image grabber. Radiation field verification has been performed to check quality assurance of the treatment machine itself by using this EPID system. The radiation field error was easily observed by edge detection of irradiated field size on EPID image when $0.6^{\circ}$ shift of collimator angle was generated. So, this implemented EPID system could be used as a radiation QA tool.
금속판/형과스크린 계측기와 CCD 카메라를 이용한 방사선영상장치가 현재 전자포탈영상에 널리 쓰이고 있다. 이 장치의 효율적인 영상획득을 위해 계측효율이 좋고, 공간분해능력이 뛰어난 금속판/ 형과스크린 계측기의 두께를 최적화할 필요가 있었다. 이 논문에서는 금속판과 형광스크린의 두께가 계측효율과 공간분해능에 미치는 영향이 연구되었다. 이 결과는 치료 엑스선 영상장치에 쓰일 수 있는 금속판/형과스크린 계측기의 최적화된 두께를 결정하는데 쓰일 수 있다. 몬테칼로 방법을 이용하여 계산한6 MV 선형가속기에서 발생되는 엑시선의 에너지 스펙트럼을 바탕으로, 여러 가지 두께의 금속판/형광스크린에 대하여 계측효율과 공간분해능을 계산하였고, 이를 실험을 통해 검증하였다. 계측효율은 입사된 엑스선의 에너지가 형광스크린에 흡수된 비율로 계산되며, 공간분해능은 흡수된 에너지의 공간 분포를 통해 계산되었다. 계측효율은 금속판의 두께에 의해, 공간분해능은 형광스크린의 두께에 의해 결정될 수 있음을 본 연구를 통해 확인할 수 있었고, 이로써 특정이용에 관련된 금속판/형광스크린의 두께에 대한 서로 보상 (trade-off) 관계에 있음을 계산과 측정결과를 통해 확인할 수 있었고, 이로써 특정이용에 관련된 금속판/형광스크린 계측기의 최적화된 두께를 산출할 수 있게 되었다. 계산을 바탕으로 CCD를 이용한 전자포탈영상장치의 시작품을 설계 및 제작하였고 팬텀을 이용하여 영상을 얻었다. 단일 프레임 영상은 노이즈가 많으나, 프레임 평균 방법을 이용하여 영상의 질을 향상시킬 수 있었다.
The Journal of Korean Society for Radiation Therapy
/
v.24
no.2
/
pp.77-84
/
2012
Purpose: To develop a geometrical quality control real-time analysis program using an electronic portal imaging to replace film evaluation method. Materials and Methods: A geometrical quality control item was established with the Eclipse treatment planning system (Version 8.1, Varian, USA) after the Electronic Portal Imaging Device (EPID) took care of the problems occurring from the fixed substructure of the linear accelerator (CL-iX, Varian, USA). Electronic portal image (single exposure before plan) was created at the treatment room's 4DTC (Version 10.2, Varian, USA) and a beam was irradiated in accordance with each item. The gaining the entire electronic portal imaging at the Off-line review and was evaluated by a self-developed geometrical quality control real-time analysis program. As for evaluation methods, the intra-fraction error was analyzed by executing 5 times in a row under identical conditions and procedures on the same day, and in order to confirm the infer-fraction error, it was executed for 10 days under identical conditions of all procedures and was compared with the film evaluation method using an Iso-align$^{TM}$ quality control device. Measurement and analysis time was measured by sorting the time into from the device setup to data achievement and the time amount after the time until the completion of analysis and the convenience of the users and execution processes were compared. Results: The intra-fraction error values for each average 0.1, 0.2, 0.3, 0.2 mm at light-radiation field coincidence, collimator rotation axis, couch rotation axis and gantry rotation axis. By checking the infer-fraction error through 10 days of continuous quality control, the error values obtained were average 1.7, 1.4, 0.7, 1.1 mm for each item. Also, the measurement times were average 36 minutes, 15 minutes for the film evaluation method and electronic portal imaging system, and the analysis times were average 30 minutes, 22 minutes. Conclusion: When conducting a geometrical quality control using an electronic portal imaging, it was found that it is efficient as a quality control tool. It not only reduces costs through not using films, but also reduces the measurement and analysis time which enhances user convenience and can improve the execution process by leaving out film developing procedures etc. Also, images done with evaluation from the self-developed geometrical quality control real-time analysis program, data processing is capable which supports the storage of information.
The application of more complex radiotherapy techniques using multileaf collimation (MLC), such as 3D conformal radiation therapy and intensity-modulated radiation therapy (IMRT), has increased the significance of verifying leaf position and motion. Due to thier reliability and empirical robustness, quality assurance (QA) of MLC. However easy use and the ability to provide digital data of electronic portal imaging devices (EPIDs) have attracted attention to portal films as an alternatives to films for routine qualify assurance, despite concerns about their clinical feasibility, efficacy, and the cost to benefit ratio. In this study, we developed method for daily QA of MLC using electronic portal images (EPIs). EPID availability for routine QA was verified by comparing of the portal films, which were simultaneously obtained when radiation was delivered and known prescription input to MLC controller. Specially designed two-test patterns of dynamic MLC were applied for image acquisition. Quantitative off-line analysis using an edge detection algorithm enhanced the verification procedure as well as on-line qualitative visual assessment. In conclusion, the availability of EPI was enough for daily QA of MLC leaf position with the accuracy of portal films.
Journal of the Institute of Electronics Engineers of Korea SC
/
v.46
no.3
/
pp.44-51
/
2009
It is very important to verify generated setup errors in cancer therapy by using a high energy radiation and to perform the precise radiation therapy. Specially, the verification of treatment position is very crucial in special therapies like fractionated stereotatic radiotherapy (FSRT). The FSRT uses normally high-dose, small field size for treating small intracranial lesions. To estimate the developed FSRT system, the isocenter accuracy of gantry, couch and collimator were performed and a total of inaccuracy was less than ${\pm}1mm$. Precise beam targeting is crucial when using high-dose, small field size FSRT for treating small intracranial lesions. The EPID image of the 3mm lead ball mounted on the isocenter with a 25mm collimator cone was acquired and detected to the extent of one pixel (0.76mm) after comparing the difference between the center of a 25mm collimator cone and a 3 mm ball after processing the EPID image. In this paper, the radiation treatment efficiency can be improved by performing precise radiation therapy with a developed video based EPID and FSRT at near real time
On-line geometrical quality assurance system has been developed using electronic portal imaging system(OQuE). EPID system is networked into Pentium PC in order to transmit the acquisited images to analysis PC. Geometrical QA parameters, including light-radiation field congruence, collimator rotation axis, and gantry rotation axis can be easily analyzed with the help of graphic user interface(GUI) software. Equipped with the EPID (Portal Vision, Varian, USA), geometrical quality assurance of a linear accelerator (CL/2100/CD, Varian, USA), which is networked into OQuE, was performed to evaluate this system. Light-radiation field congruence tests by center of gravity analysis shows 0.2~0.3mm differences for various field sizes. Collimator (or Gantry) rotation axis for various angles could be obtained by superposing 4 shots of angles. The radius of collimator rotation axis is measured to 0.2mm for upper jaw collimator, and 0.1mm for lower jaw. Acquisited images for various gantry angles were rotated according to the gantry angle and actual center of image point obtained from collimator axis test. The rotated images are superpositioned and analyzed as the same method as collimator rotation axis. The radius of gantry rotation axis is calculated 0.3mm for anterior/posterior direction (gantry 0$^{\circ}$ and 170$^{\circ}$) and 0.7mm for right/left direction(gantry 90$^{\circ}$ and 260$^{\circ}$). Image acquisition for data analysis is faster than conventional method and the results turn out to be excellent for the development goal and accurate within a milimeter range. The OQuE system is proven to be a good tool for the geometrical quality assurance of linear accelerator using EPID.
Sohn Jason W.;Mansur David B.;Monroe James I.;Drzymala Robert E.;Jin Ho-Sang;Suh Tae-Suk;Dempsey James F.;Klein Eric E.
Progress in Medical Physics
/
v.17
no.1
/
pp.24-31
/
2006
Automated analysis software was developed to measure the magnitude of the intrafractional and interfractional errors during breast radiation treatments. Error analysis results are important for determining suitable planning target volumes (PTV) prior to Implementing breast-conserving 3-D conformal radiation treatment (CRT). The electrical portal imaging device (EPID) used for this study was a Portal Vision LC250 liquid-filled ionization detector (fast frame-averaging mode, 1.4 frames per second, 256X256 pixels). Twelve patients were imaged for a minimum of 7 treatment days. During each treatment day, an average of 8 to 9 images per field were acquired (dose rate of 400 MU/minute). We developed automated image analysis software to quantitatively analyze 2,931 images (encompassing 720 measurements). Standard deviations ($\sigma$) of intrafractional (breathing motion) and intefractional (setup uncertainty) errors were calculated. The PTV margin to include the clinical target volume (CTV) with 95% confidence level was calculated as $2\;(1.96\;{\sigma})$. To compensate for intra-fractional error (mainly due to breathing motion) the required PTV margin ranged from 2 mm to 4 mm. However, PTV margins compensating for intefractional error ranged from 7 mm to 31 mm. The total average error observed for 12 patients was 17 mm. The intefractional setup error ranged from 2 to 15 times larger than intrafractional errors associated with breathing motion. Prior to 3-D conformal radiation treatment or IMRT breast treatment, the magnitude of setup errors must be measured and properly incorporated into the PTV. To reduce large PTVs for breast IMRT or 3-D CRT, an image-guided system would be extremely valuable, if not required. EPID systems should incorporate automated analysis software as described in this report to process and take advantage of the large numbers of EPID images available for error analysis which will help Individual clinics arrive at an appropriate PTV for their practice. Such systems can also provide valuable patient monitoring information with minimal effort.
The IP(imaging plate) has been widely used to measure the two-dimensional distribution of incident radiation since it has a high sensitivity, reusability, a wide dynamic range, a high position resolution. Particularly, the easiness of acquiring digitized image using IP poses a strong merit because recent trend of data handling prefers image digitization. In order to test its usefulness in photon beam dosimetry, we measured the off-axis ratio(OAR) on portal planes and percent depth dose(PDD) within a phantom using IP, and compared the results with the data based on EGS4 Monte Carlo particle transport code, ion-chambers, conventional films. For the measurement, we used 6 MV X-rays, various field sizes. As a result, IP showed significant deviation from ion-chamber measurement: a significant overresponse, 100% greater than that of ion-chamber measurement at deep part of the phantom. Filtration of low-energy scattered photons at deep part of the phantom using 0.5 mm thick lead sheets did improve the result, only to the unacceptable extent. However, portal dose measurement showed possibilities of If as a dosimeter by showing errors less than 5%, as compared with film measurement.
Lee, Choong Won;Park, Do Keun;Choi, A Hyun;Ahn, Jong Ho;Song, Ki Weon
The Journal of Korean Society for Radiation Therapy
/
v.25
no.1
/
pp.57-67
/
2013
Purpose: Replacing the film which used to be used for checking the set-up of the patient and dosimetry during radiation therapy, more and more EPID equipped devices are in use at present. Accordingly, this article tried to evaluated the accuracy of the position check-up and the usefulness of dosimetry during the use of an electronic portal imaging device. Materials and Methods: On 50 materials acquired with the search of Korea Society Radiotherapeutic Technology, The Korean Society for Radiation Oncology, and Pubmed using "EPID", "Portal dosimetry", "Portal image", "Dose verification", "Quality control", "Cine mode", "Quality - assurance", and "In vivo dosimetry" as indexes, the usefulness of EPID was analyzed by classifying them as history of EPID and dosimetry, set-up verification and characteristics of EPID. Results: EPID is developed from the first generation of Liquid-filled ionization chamber, through the second generation of Camera-based fluoroscopy, and to the third generation of Amorphous-silicon EPID imaging modes can be divided into EPID mode, Cine mode and Integrated mode. When evaluating absolute dose accuracy of films and EPID, it was found that EPID showed within 1% and EDR2 film showed within 3% errors. It was confirmed that EPID is better in error measurement accuracy than film. When gamma analyzing the dose distribution of the base exposure plane which was calculated from therapy planning system, and planes calculated by EDR2 film and EPID, both film and EPID showed less than 2% of pixels which exceeded 1 at gamma values (r%>1) with in the thresholds such as 3%/3 mm and 2%/2 mm respectively. For the time needed for full course QA in IMRT to compare loads, EDR2 film recorded approximately 110 minutes, and EPID recorded approximately 55 minutes. Conclusion: EPID could easily replace conventional complicated and troublesome film and ionization chamber which used to be used for dosimetry and set-up verification, and it was proved to be very efficient and accurate dosimetry device in quality assurance of IMRT (intensity modulated radiation therapy). As cine mode imaging using EPID allows locating tumors in real-time without additional dose in lung and liver which are mobile according to movements of diaphragm and in rectal cancer patients who have unstable position, it may help to implement the most optimal radiotherapy for patients.
We have designed the software for geometrical QC/QA for medical linear accelerator using electronic portal imaging devices (EPID). The radiation-light field congruence, the collimator rotation axis, and the gantry rotation axis could be estimated with this software. Precision of the system is within 1mm. The collimator and the gantry rotation axis could be measured by superpositioning the images from 4 different collimator (or gantry) angles. The EPID system and the analysis software which was developed in this study make it possible that the quantitative and the objective geometrical QC/QA of the linear accelerator.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.