• Title/Summary/Keyword: 전자상거래 특징

Search Result 165, Processing Time 0.026 seconds

A Study of Protection Profile and Analysis of Related Standard for Internet Banking Systems (인터넷 뱅킹 시스템 관련 표준 분석 및 보호프로파일 개발에 관한 연구)

  • Jo, Hea-Suk;Kim, Seung-Joo;Won, Dong-Ho
    • The KIPS Transactions:PartC
    • /
    • v.17C no.3
    • /
    • pp.223-232
    • /
    • 2010
  • Due to the advance of Internet, offline services are expanded into online services and a financial transaction company provides online services using internet baning systems. However, security problems of the internet banking systems are caused by a lack of security for developing the internet banking systems. Although the financial transaction company has applied existing internal and external standards, ISO 20022, ISO/IEC 27001, ISO/IEC 9789, ISO/IEC 9796, Common Criteria, etc., there are still vulnerabilities. Because the standards lack in a consideration of security requirements of the internet banking system. This paper is intended to explain existing standards and discusses a reason that the standards have not full assurance of security when the internet baning system is applied by single standard. Moreover we make an analysis of a security functions for the internet baning systems and then selects the security requirements. In this paper, we suggest a new protection profile of the internet baning systems using Common Criteria V.3.1 from the analysis mentioned above.

User Identification System Based on Iris Information Using a Mouse (홍채 정보 기반 마우스를 활용한 사용자 인증 시스템)

  • Kim Sin-Hong;Rho Kwang-Hyun;Moon Soon-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.6 no.1
    • /
    • pp.143-150
    • /
    • 2006
  • Recently, the fields such as internet banking and electronic commerce are more and more growing due to the growth of practical use of personal computer and the progress of communication technology, So importance of information security has been increased. In fact, traditional identification systems are inherently insecure because the personal identification information can be forgotten, stolen or lost. In this paper, we propose an identification system that can decide whether the user is registered based on iris information using a mouse. The proposed system is mounted a CCD camera and an illumination device on general type mouse. Then it decides whether the user is registered after the acquired image are processed and analyzed. This system gives a PC user the advantage of low-cost and convenience without necessity preparing high-cost equipment for biometrics when using a identification system.

  • PDF

Automatic Product Feature Extraction for Efficient Analysis of Product Reviews Using Term Statistics (효율적인 상품평 분석을 위한 어휘 통계 정보 기반 평가 항목 추출 시스템)

  • Lee, Woo-Chul;Lee, Hyun-Ah;Lee, Kong-Joo
    • The KIPS Transactions:PartB
    • /
    • v.16B no.6
    • /
    • pp.497-502
    • /
    • 2009
  • In this paper, we introduce an automatic product feature extracting system that improves the efficiency of product review analysis. Our system consists of 2 parts: a review collection and correction part and a product feature extraction part. The former part collects reviews from internet shopping malls and revises spoken style or ungrammatical sentences. In the latter part, product features that mean items that can be used as evaluation criteria like 'size' and 'style' for a skirt are automatically extracted by utilizing term statistics in reviews and web documents on the Internet. We choose nouns in reviews as candidates for product features, and calculate degree of association between candidate nouns and products by combining inner association degree and outer association degree. Inner association degree is calculated from noun frequency in reviews and outer association degree is calculated from co-occurrence frequency of a candidate noun and a product name in web documents. In evaluation results, our extraction method showed an average recall of 90%, which is better than the results of previous approaches.

Selection of Detection Measures for Malicious Codes using Naive Estimator (단순 추정량을 이용한 악성코드의 탐지척도 선정)

  • Mun, Gil-Jong;Kim, Yong-Min
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.18 no.2
    • /
    • pp.97-105
    • /
    • 2008
  • The various mutations of the malicious codes are fast generated on the network. Also the behaviors of them become intelligent and the damage becomes larger step by step. In this paper, we suggest the method to select the useful measures for the detection of the codes. The method has the advantage of shortening the detection time by using header data without payloads and uses connection data that are composed of TCP/IP packets, and much information of each connection makes use of the measures. A naive estimator is applied to the probability distribution that are calculated by the histogram estimator to select the specific measures among 80 measures for the useful detection. The useful measures are then selected by using relative entropy. This method solves the problem that is to misclassify the measure values. We present the usefulness of the proposed method through the result of the detection experiment using the detection patterns based on the selected measures.

Item-Based Collaborative Filtering Recommendation Technique Using Product Review Sentiment Analysis (상품 리뷰 감성분석을 이용한 아이템 기반 협업 필터링 추천 기법)

  • Yun, So-Young;Yoon, Sung-Dae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.8
    • /
    • pp.970-977
    • /
    • 2020
  • The collaborative filtering recommendation technique has been the most widely used since the beginning of e-commerce companies introducing the recommendation system. As the online purchase of products or contents became an ordinary thing, however, recommendation simply applying purchasers' ratings led to the problem of low accuracy in recommendation. To improve the accuracy of recommendation, in this paper suggests the method of collaborative filtering that analyses product reviews and uses them as a weighted value. The proposed method refines product reviews with text mining to extract features and conducts sentiment analysis to draw a sentiment score. In order to recommend better items to user, sentiment weight is used to calculate the predicted values. The experiment results show that higher accuracy can be gained in the proposed method than the traditional collaborative filtering.

Automation of Online to Offline Stores: Extremely Small Depth-Yolov8 and Feature-Based Product Recognition (Online to Offline 상점의 자동화 : 초소형 깊이의 Yolov8과 특징점 기반의 상품 인식)

  • Jongwook Si;Daemin Kim;Sungyoung Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.17 no.3
    • /
    • pp.121-129
    • /
    • 2024
  • The rapid advancement of digital technology and the COVID-19 pandemic have significantly accelerated the growth of online commerce, highlighting the need for support mechanisms that enable small business owners to effectively respond to these market changes. In response, this paper presents a foundational technology leveraging the Online to Offline (O2O) strategy to automatically capture products displayed on retail shelves and utilize these images to create virtual stores. The essence of this research lies in precisely identifying and recognizing the location and names of displayed products, for which a single-class-targeted, lightweight model based on YOLOv8, named ESD-YOLOv8, is proposed. The detected products are identified by their names through feature-point-based technology, equipped with the capability to swiftly update the system by simply adding photos of new products. Through experiments, product name recognition demonstrated an accuracy of 74.0%, and position detection achieved a performance with an F2-Score of 92.8% using only 0.3M parameters. These results confirm that the proposed method possesses high performance and optimized efficiency.

A Secure Multiagent Engine Based on Public Key Infrastructure (공개키 기반 구조 기반의 보안 다중 에이전트 엔진)

  • 장혜진
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.4
    • /
    • pp.313-318
    • /
    • 2002
  • The Integration of agent technology and security technology is needed to many application areas like electronic commerce. This paper suggests a model of extended multi-agent engine which supports privacy, integrity, authentication and non-repudiation on agent communication. Each agent which is developed with the agent engine is composed of agent engine layer and agent application layer. We describe and use the concepts self-to-self messages, secure communication channel, and distinction of KQML messages in agent application layer and messages in agent engine layer. The suggested agent engine provides an agent communication language which is extended to enable secure communication between agents without any modifications or restrictions to content layer and message layer of KQML. Also, in the model of our multi-agent engine, secure communication is expressed and processed transparently on the agent communication language.

  • PDF

Product Evaluation Criteria Extraction through Online Review Analysis: Using LDA and k-Nearest Neighbor Approach (온라인 리뷰 분석을 통한 상품 평가 기준 추출: LDA 및 k-최근접 이웃 접근법을 활용하여)

  • Lee, Ji Hyeon;Jung, Sang Hyung;Kim, Jun Ho;Min, Eun Joo;Yeo, Un Yeong;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.97-117
    • /
    • 2020
  • Product evaluation criteria is an indicator describing attributes or values of products, which enable users or manufacturers measure and understand the products. When companies analyze their products or compare them with competitors, appropriate criteria must be selected for objective evaluation. The criteria should show the features of products that consumers considered when they purchased, used and evaluated the products. However, current evaluation criteria do not reflect different consumers' opinion from product to product. Previous studies tried to used online reviews from e-commerce sites that reflect consumer opinions to extract the features and topics of products and use them as evaluation criteria. However, there is still a limit that they produce irrelevant criteria to products due to extracted or improper words are not refined. To overcome this limitation, this research suggests LDA-k-NN model which extracts possible criteria words from online reviews by using LDA and refines them with k-nearest neighbor. Proposed approach starts with preparation phase, which is constructed with 6 steps. At first, it collects review data from e-commerce websites. Most e-commerce websites classify their selling items by high-level, middle-level, and low-level categories. Review data for preparation phase are gathered from each middle-level category and collapsed later, which is to present single high-level category. Next, nouns, adjectives, adverbs, and verbs are extracted from reviews by getting part of speech information using morpheme analysis module. After preprocessing, words per each topic from review are shown with LDA and only nouns in topic words are chosen as potential words for criteria. Then, words are tagged based on possibility of criteria for each middle-level category. Next, every tagged word is vectorized by pre-trained word embedding model. Finally, k-nearest neighbor case-based approach is used to classify each word with tags. After setting up preparation phase, criteria extraction phase is conducted with low-level categories. This phase starts with crawling reviews in the corresponding low-level category. Same preprocessing as preparation phase is conducted using morpheme analysis module and LDA. Possible criteria words are extracted by getting nouns from the data and vectorized by pre-trained word embedding model. Finally, evaluation criteria are extracted by refining possible criteria words using k-nearest neighbor approach and reference proportion of each word in the words set. To evaluate the performance of the proposed model, an experiment was conducted with review on '11st', one of the biggest e-commerce companies in Korea. Review data were from 'Electronics/Digital' section, one of high-level categories in 11st. For performance evaluation of suggested model, three other models were used for comparing with the suggested model; actual criteria of 11st, a model that extracts nouns by morpheme analysis module and refines them according to word frequency, and a model that extracts nouns from LDA topics and refines them by word frequency. The performance evaluation was set to predict evaluation criteria of 10 low-level categories with the suggested model and 3 models above. Criteria words extracted from each model were combined into a single words set and it was used for survey questionnaires. In the survey, respondents chose every item they consider as appropriate criteria for each category. Each model got its score when chosen words were extracted from that model. The suggested model had higher scores than other models in 8 out of 10 low-level categories. By conducting paired t-tests on scores of each model, we confirmed that the suggested model shows better performance in 26 tests out of 30. In addition, the suggested model was the best model in terms of accuracy. This research proposes evaluation criteria extracting method that combines topic extraction using LDA and refinement with k-nearest neighbor approach. This method overcomes the limits of previous dictionary-based models and frequency-based refinement models. This study can contribute to improve review analysis for deriving business insights in e-commerce market.

Object VR-based 2.5D Virtual Textile Wearing System : Viewpoint Vector Estimation and Textile Texture Mapping (오브젝트 VR 기반 2.5D 가상 직물 착의 시스템 : 시점 벡터 추정 및 직물 텍스쳐 매핑)

  • Lee, Eun-Hwan;Kwak, No-Yoon
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.19-26
    • /
    • 2008
  • This paper is related to a new technology allowing a user to have a 360 degree viewpoint of the virtual wearing object, and to an object VR(Virtual Reality)-based 2D virtual textile wearing system using viewpoint vector estimation and textile texture mapping. The proposed system is characterized as capable of virtually wearing a new textile pattern selected by the user to the clothing shape section segmented from multiview 2D images of clothes model for object VR, and three-dimensionally viewing its virtual wearing appearance at a 360 degree viewpoint of the object. Regardless of color or intensity of model clothes, the proposed system is possible to virtually change the textile pattern with holding the illumination and shading properties of the selected clothing shape section, and also to quickly and easily simulate, compare, and select multiple textile pattern combinations for individual styles or entire outfits. The proposed system can provide higher practicality and easy-to-use interface, as it makes real-time processing possible in various digital environment, and creates comparatively natural and realistic virtual wearing styles, and also makes semi -automatic processing possible to reduce the manual works to a minimum. According to the proposed system, it can motivate the creative activity of the designers with simulation results on the effect of textile pattern design on the appearance of clothes without manufacturing physical clothes and, as it can help the purchasers for decision-making with them, promote B2B or B2C e-commerce.

  • PDF

Color Image Segmentation and Textile Texture Mapping of 2D Virtual Wearing System (2D 가상 착의 시스템의 컬러 영상 분할 및 직물 텍스쳐 매핑)

  • Lee, Eun-Hwan;Kwak, No-Yoon
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.5
    • /
    • pp.213-222
    • /
    • 2008
  • This paper is related to color image segmentation and textile texture mapping for the 2D virtual wearing system. The proposed system is characterized as virtually wearing a new textile pattern selected by user to the clothing shape section, based on its intensity difference map, segmented from a 2D clothes model image using color image segmentation technique. Regardless of color or intensity of model clothes, the proposed system is possible to virtually change the textile pattern or color with holding the illumination and shading properties of the selected clothing shape section, and also to quickly and easily simulate, compare, and select multiple textile pattern combinations for individual styles or entire outfits. The proposed system can provide higher practicality and easy-to-use interface, as it makes real-time processing possible in various digital environment, and creates comparatively natural and realistic virtual wearing styles, and also makes semi-automatic processing possible to reduce the manual works to a minimum. According to the proposed system, it can motivate the creative activity of the designers with simulation results on the effect of textile pattern design on the appearance of clothes without manufacturing physical clothes and, as it can help the purchasers for decision-making with them, promote B2B or B2C e-commerce.