• Title/Summary/Keyword: 전역최적화 기법

Search Result 166, Processing Time 0.024 seconds

Function Optimization Algorithm: C-AGA (함수 최적화 알고리즘: C-AGA)

  • Ko, Myung-Sook;Kim, Ju-Yeon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.137-142
    • /
    • 2005
  • 유전자 알고리즘은 전체 탐색 공간을 통해 전역 해를 찾는 최적화 알고리즘으로서 복잡한 상태 공간에서 최적 해를 찾기 위해 전통적인 최적화 기법과는 달리 유향성 임의 탐색을 행한다. 또한, 유전적 탐색과 국부 탐색을 결합시킨 복합 유전자 알고리즘은 최적해로의 수렵 속도를 향상시킬 수 있다. 이 논문에서는 함수 최적화를 위해 학습 속도를 개선한 복합 유전자 알고리즘(C-AGA)을 제안한다. 제안한 최적화 알고리즘의 효율을 기존의 복합 유전자 알고리즘 기법(라마키안 진화 및 볼드윈 효과)과 비교 평가하였다. 다양한 함수 최적화 문제에 대하여 제안한 알고리즘이 기존의 방법보다 더 빨리 전역 최적 해를 찾을 수 있음을 증명하였다.

  • PDF

Optimization of Komsat II Structure Using Genetic Algorithm in Parallel Computation Environment (유전자 알고리즘를 사용한 분산 처리에 의한 다목적 위성 구조체의 최적화)

  • 윤진환;임종빈;박정선
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2002.11a
    • /
    • pp.3-7
    • /
    • 2002
  • 컴퓨터 네트워킹 기술의 발달에 힘입어 분산처리를 이용한 기법이 복잡한 구조물의 최적설계에 널리 사용되고 있다. 최적설계시 구조물이 복잡하고 설계 변수가 많아질수록 설계 변수간의 교호작용이 복잡해지고 국부최적해가 많아지는 특성이 있다. 최근의 최적 설계는 이러한 문제점을 해결하고자 다양한 전역 최적화 기법을 도입하여 적용하고 있다. 본 연구에서는 진화이론을 바탕으로 한 유전자 알고리즘과 실험계획법을 바탕으로 한 반응표면법에 분산처리 기법을 도입하여 인공위성 추진 모듈의 최적화에 적용시켰다. 그 결과 유전자 알고리즘이 조금 더 좋은 최적값을 보였으며 해석시간은 반응표면법을 적용 시켰을 경우가 훨씬 짧았다. 병렬처리 기법을 이용한 위성구조체의 최적설계에 있어 유전자 알고리즘은 해의 전역성에서 반응표면법은 시간의 효율성에서 각각 장점을 보였다.

  • PDF

인공 신경망을 이용한 구조 최적화 기법

  • 양영순;문상훈
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.31 no.1
    • /
    • pp.39-42
    • /
    • 1994
  • 인공 신경망은 빠른 속도와 안정성 등의 많은 장점을 갖고 있기 때문에 최근 들어서 여러 분야 에서 그 응용이 활발히 연구되고 있다. 인공 신경망의 한 모델인 홉필드 네트워크는 네트워크의 에너지를 최소화시키는 방향으로 네트워크의 상태를 바꾸며, 최소 에너지 상태에서 안정 상태를 유지하는 특징을 갖고 있다. 이러한 흡필드 네트워크의 특징은 흡필드 네트워크를 최적화 문 제에 적용시킬 수 있는 가능성을 제시하고 있다. 기존의 최적화 기법은 기본적으로 국부적인 탐색 기법을 사용하기 때문에, 전역적 최적해를 구하기 위해 초기점을 달리하여 여러번 계산을 수행하여 그 중 가장 좋은 결과를 취하는 방법을 사용하여야 한다. 따라서 이러한 방법은 초 기점의 선택이 결과에 큰 영향을 미치게 되는데, 설계 변수가 많고 제한 조건이 복잡할 경우 초기점 선택에 어려움이 따른다. 본 연구에서는 흡필드 네트워크와 시뮬레이티드 어닐링을 결 합하여 전역적 최적해를 찾는 기법으로서 뉴드-옵티마이저 모델을 제시하고 있다.

  • PDF

Optimal Design of Torque using Niching GA (Niching GA를 이용한 토크 모터의 최적 설계)

  • Kim, Jae-Kwang;Cho, Dong-Hyeok;Jung, Hyun-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.798-800
    • /
    • 2000
  • 전기기기의 구조 및 형상 최적화에 있어서 다양한 제한 사항과 설계방법들을 이용하기 위하여 전역 최대점과 함께 국소 최대점까지 고려할 수 있는 최적화 기법이 요구되고 있다. 다양한 제한사항들을 모두 목적 함수에 포함시킬 경우에 발생하는 여러 가지 문제점들을 해결하고 설계자의 주관적 평가도 활용할 수 있는 새로운 기법을 필요로 한다. 이처럼 다양한 해의 생성과 보존을 필요로 하는 분야에 니체(niche) 개념이 이용될 수 있다. 본 논문에서는 니체 개념을 포함하는 유전 알고리즘을 이용하여 토크의 선형성을 보장하는 토크 모터의 최적 설계를 수행하였다. 최적 설계 결과를 전역 최대점만을 찾는 최적화 기법과 비교하여 그 타당성을 입증하였다.

  • PDF

Development of a Parameter Estimation Support System for SWMM 5 (SWMM 5의 매개변수 추정지원 시스템 개발)

  • Jung, Tae Hun;Lee, Sangho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.529-533
    • /
    • 2016
  • 미국 환경청의 SWMM 5(storm water management model 5)는 유역의 홍수유출 모의 및 연속 유출 모의를 할 수 있는 모형으로서 국내뿐만 아니라 세계적으로 많이 사용되고 있는 모형이다. SWMM 5와 같은 유역 유출모형에서 결과의 적절성을 향상시키기 위해서는 모형에 사용되는 매개변수를 올바르게 추정할 필요가 있다. 하지만, 외국의 정교한 유역 유출모형들이 우리나라에서 제대로 적용되고 있지 못하는 이유 중 하나는 적절한 매개변수의 추정이 이루어지지 못하고 있는 점이다. 이러한 문제를 해결하고자 SWMM 5의 매개변수 추정 지원 시스템을 개발하였다. SWMM 5의 매개변수 추정지원 시스템은 민감도 분석, 최적화 기법에 의한 모형 자동보정, 매개변수 할당 및 도움 모듈로 이루어져 있다. SWMM 5의 매개변수 추정 지원 시스템에 사용되는 최적화 기법은 전역최적화 기법 중 하나인 SCE-UA(shuffled complex evolution-University of Arizona) 이다. SWMM 5의 매개변수 추정 지원 시스템의 개발은 국내 수자원 기술자들의 SWMM 5에 대한 이해 및 활용도를 더욱 향상시켜줄 것으로 기대한다.

  • PDF

A Global Optimization Method of Radial Basis Function Networks for Function Approximation (함수 근사화를 위한 방사 기저함수 네트워크의 전역 최적화 기법)

  • Lee, Jong-Seok;Park, Cheol-Hoon
    • The KIPS Transactions:PartB
    • /
    • v.14B no.5
    • /
    • pp.377-382
    • /
    • 2007
  • This paper proposes a training algorithm for global optimization of the parameters of radial basis function networks. Since conventional training algorithms usually perform only local optimization, the performance of the network is limited and the final network significantly depends on the initial network parameters. The proposed hybrid simulated annealing algorithm performs global optimization of the network parameters by combining global search capability of simulated annealing and local optimization capability of gradient-based algorithms. Via experiments for function approximation problems, we demonstrate that the proposed algorithm can find networks showing better training and test performance and reduce effects of the initial network parameters on the final results.

Parameter Calibrations of a Daily Rainfall-Runoff Model Using Global Optimization Methods (전역최적화 기법을 이용한 강우-유출모형의 매개변수 자동보정)

  • Kang, Min-Goo;Park, Seung-Woo;Im, Sang-Jun;Kim, Hyun-Jun
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.5
    • /
    • pp.541-552
    • /
    • 2002
  • Two global optimization methods, the SCE-UA method and the Annealing-Simplex(A-S) method for calibrating a daily rainfall-runoff model, a Tank model, was compared with that of the Downhill Simplex method. In synthetic data study, 100% success rates for all objective functions were obtained from the A-S method, and the SCE-UA method was also consistently able to obtain good estimates. The Downhill Simplex method was converged to the true values only when the initial guess was close to the true values. In the historical data study, the A-S method and the SCE-UA method showed consistently good results regardless of objective function. An objective function was developed, which puts more weight on the low flows.

A Multi-path Routing Mechanism with Local Optimization for Load Balancing in the Tactical Backbone Network (전술 백본망에서 부하 분산을 위한 다중 경로 지역 최적화 기법)

  • Kim, Yongsin;Kim, Younghan
    • Journal of KIISE
    • /
    • v.41 no.12
    • /
    • pp.1145-1151
    • /
    • 2014
  • In this paper, we propose MPLO(Multi-Path routing with Local Optimization) for load balancing in the tactical backbone network. The MPLO manages global metric and local metric separately. The global metric is propagated to other routers via a routing protocol and is used for configuring loop-free multi-path. The local metric reflecting link utilization is used to find an alternate path when congestion occurs. We verified MPLO could effectively distribute user traffic among available routers by simulation.

Development of a Branch-and-Bound Global Optimization Based on B-spline Approximation (비스플라인 분지한계법 기반의 전역최적화 알고리즘 개발)

  • Park, Sang-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.191-201
    • /
    • 2010
  • This paper presents a new global optimization algorithm based on the branch-and-bound principle using Bspline approximation techniques. It describes the algorithmic components and details on their implementation. The key components include the subdivision of a design space into mutually disjoint subspaces and the bound calculation of the subspaces, which are all established by a real-valued B-spline volume model. The proposed approach was demonstrated with various test problems to reveal computational performances such as the solution accuracy, number of function evaluations, running time, memory usage, and algorithm convergence. The results showed that the proposed algorithm is complete without using heuristics and has a good possibility for application in large-scale NP-hard optimization.

emantic Query Optimization Using Description Logic in Mutidatabase Systems (멀티데이터베이스 환경 하에서의 Description Logic을 이용한 의미상 질의 최적화)

  • 이태웅;권주흠;백두권
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04a
    • /
    • pp.644-646
    • /
    • 2003
  • 물류 공급 관리 시스템과 같은 정보 통합 시스템은 분산되어 있는 데이터베이스들에 대해서 정보를 통합하여 사용자에게 보여준다. 이러한 정보 통합 시스템은 전역 질의를 생성하고 지역 질의로 변환하여 실행하기 전에 질의를 최적화할 필요성이 있다. 그런데, 단일데이터 베이스 시스템에서의 질의 최적화 기법은 멀티데이터베이스 시스템에서 사용하기에는 부적절하다. 이는 분산된 데이터베이스 환경에서 오는 높은 연결 오버헤드, 높은 계산 시간, 데이터의 중복성 뿐만 아니라 의미 이질성 문제 때문에 기존의 최적화 방법은 사용하기가 어렵다. 이를 해결하기 위해서 의미상 질의 최적화 방법이 연구되어 왔다. 의미상 질의 최적화는 전역 질의보다 더 효과적으로 응답하고 의미상으로 동등한 질의로 변환하기 위해서 의미상 지식을 사용한다. 본 논문에서는 정보 통합 시스템에서 Description Logic(DL)을 이용하여 의미상 지식으로 사용할 지식 기반을 표현하고 이를 바탕으로 추론화된 지식을 이용하는 의미상 질의 최적화 방식을 제시한다.

  • PDF