• Title/Summary/Keyword: 전역적 최적화

Search Result 228, Processing Time 0.027 seconds

Global Optimization Using a Sequential Algorithm with Orthogonal Arrays in Discrete Space (이산공간에서 순차적 알고리듬(SOA)을 이용한 전역최적화)

  • Cho, Bum-Sang;Lee, Jeong-Wook;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.858-863
    • /
    • 2004
  • In the optimized design of an actual structure, the design variable should be selected among any certain values or corresponds to a discrete design variable that needs to handle the size of a pre-formatted part. Various algorithms have been developed for discrete design. As recently reported, the sequential algorithm with orthogonal arrays(SOA), which is a local minimum search algorithm in discrete space, has excellent local minimum search ability. It reduces the number of function evaluation using orthogonal arrays. However it only finds a local minimum and the final solution depends on the initial value. In this research, the genetic algorithm, which defines an initial population with the potential solution in a global space, is adopted in SOA. The new algorithm, sequential algorithm with orthogonal arrays and genetic algorithm(SOAGA), can find a global solution with the properties of genetic algorithm and the solution is found rapidly with the characteristics of SOA.

  • PDF

Two Level Path Planning Algorithm to Avoid Dynamic Obstacles (동적 장애물 회피를 위한 2단계 경로 계획 알고리즘)

  • Cho, Su-Jin;Kim, Kyung-Hye;Yu, Kyeon-Ah
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.486-488
    • /
    • 2012
  • 본 논문에서는 로보틱스나 컴퓨터 게임 등의 다양한 분야에서 일반적으로 존재하는 동적인 환경에서 장애물 회피를 위한 경로 계획 알고리즘을 연구하였다. 제안하는 알고리즘은 전역 경로계획과 지역 경로계획의 두 단계로 이루어져 있고, A*와 가시성 그래프에 의해 구해진 전역 경로를 이동할 때에 동적 장애물을 감지하게 되면 이를 회피하기 위해 포텐샬장으로 지역 경로를 구성한다. 이 알고리즘은 포텐샬장을 A*와 결합함으로써 지역 최적화 문제를 해결하고 포텐샬장만으로 이동하는 경우에 비해 시간적인 측면에서도 더욱 효율적이다.

An Optimal Design of Neuro-Fuzzy Logic Controller Using Lamarckian Co-adaptation (라마키안 상호 적응에 의한 뉴로-퍼지 제어기의 최적 설계)

  • 이한별;김대진
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.384-389
    • /
    • 1998
  • 본 논문은 특정 응용에 적합한 퍼지 제어기의 최적 설계 파라메터(퍼지 규칙과 소속 함수)를 찾는데 역전파 학습 과정과 유전 알고리즘을 결합한 Lamarckian 상호적응 기법을 이용한 뉴로-퍼지 제어기의 새로운 설계 방법을 제안한다. 설계 파라메타들은 진화에 의한 전역적 탐색을 통해 높은 포함값과 유용한 퍼지 규칙들을 갖는 규칙 베이스와 작은 근사화 오차와 좋은 제어 성능을 갖는 소속 함수들을 얻도록 제어기간 파라메타 조절을 수행하며, 학습에 의한 국부적 탐색을 통해 각 퍼지 제어기가 원하는 제어 결과를 나타내도록 제어기내 파라메타 조절을 수행한다. 제안한 상호적응 설계 방법은 유전 알고리즘의 모든 세대에서 역전파 학습이 이루어지므로 보다 좋은 근사화 능력을 나타나고, 사용한 무게 중심 비퍼지화기가 정확한 비퍼지화값을 계산하므로 보다 좋은 제어 성능을 가지며, 퍼지 규칙 베이스와 소속 함수들의 최적화 탐색 과정이 입출력 공간의 같은 퍼지 분할 상에서 통합된 적응 함수에 의하여 동시에 수행되므로 탐색을 위한 작업 공간이 아주 작아지는 장점이 있다. 시뮬레이션 결과는 Lamarckian 상호 적응에 의해 얻어진 FLC가 퍼지 규\ulcorner 수, 근사화 능력, 제어 성능등 모든면에서 다른 방법에 의해 얻어진 FLC보다 가장 우수함을 보여준다.

  • PDF

Performance Improvement of Cooperating Agents through Balance between Intensification and Diversification (강화와 다양화의 조화를 통한 협력 에이전트 성능 개선에 관한 연구)

  • 이승관;정태충
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.6
    • /
    • pp.87-94
    • /
    • 2003
  • One of the important fields for heuristic algorithm is how to balance between Intensification and Diversification. Ant Colony Optimization(ACO) is a new meta heuristic algorithm to solve hard combinatorial optimization problem. It is a population based approach that uses exploitation of positive feedback as well as Breedy search It was first Proposed for tackling the well known Traveling Salesman Problem(TSP). In this paper, we deal with the performance improvement techniques through balance the Intensification and Diversification in Ant Colony System(ACS). First State Transition considering the number of times that agents visit about each edge makes agents search more variously and widen search area. After setting up criteria which divide elite tour that receive Positive Intensification about each tour, we propose a method to do addition Intensification by the criteria. Implemetation of the algorithm to solve TSP and the performance results under various conditions are conducted, and the comparision between the original An and the proposed method is shown. It turns out that our proposed method can compete with the original ACS in terms of solution quality and computation speed to these problem.

Parameter Optimization and Uncertainty Analysis of the Rainfall-Runoff Model Coupled with Hierarchical Bayesian Inference Scheme (Hierarchical Bayesian 기법을 통한 강우-유출모형 매개변수의 최적화 및 불확실성 분석)

  • Mun, Yeong-Il;Gwon, Hyeon-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1752-1756
    • /
    • 2007
  • 정교한 강우-유출 모의를 위해서는 적절한 매개변수의 추정이 필수적이며, 매개변수 추정 방법은 시행착오(trial and error)에 의한 수동보정법과 최적화방법을 사용한 자동보정법으로 구분할 수 있다. 모형의 매개변수의 수가 많은 경우 수동보정법에 의한 매개변수 추정은 매우 어렵다. 자동 보정법에 사용되는 최적화방법은 Rosenbrock 알고리즘, patten search, 컴플렉스(complex) 방법, Powell 방법 등과 같은 지역최적화 방법과 전역최적화 방법으로 나눌 수 있다. 그러나 기존 방법론들은 매개변수의 최적화를 추적하기 위한 알고리즘이 대부분이며 이들 매개변수에 관련된 불확실성을 평가하는데는 미흡한 단접이 있다. 이러한 점에서 본 연구에서는 강우-유출모형의 매개변수 추정에 있어서 불확실성을 평가할 수 있는 새로운 방법론을 검토하고자 한다. 매개변수와 관련된 불확실성을 평가하기 위한 방법은 여러 가지가 있으나 통계적으로 매우 우수한 능력을 보이는 Hierarchical Bayesian 알고리즘을 Probability-Distributed 강우-유출 모형에 적용하였다. 본 방법론은 최적화와 동시에 각 매개변수에 관련된 사후분포(posterior distribution)의 추정이 가능하므로 모형이 갖는 불확실성을 효과적으로 평가할 수 있다. 따라서, 수자원 관리에 있어서 불확실성을 고려할 수 있으므로 보다 수리수문학적 위험도를 저감할 수 있을 것으로 판단된다.

  • PDF

Stream Discharge Estimation by Hydraulic Channel Routing and Stage Measurement (수위관측과 수리학적 하도추적에 의한 하천유량 간접추정)

  • Lee, Sang-Ho;Gang, Sin-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.34 no.5
    • /
    • pp.543-549
    • /
    • 2001
  • This research estimated stream discharges indirectly by hydraulic channel routing. Only stage data from three stage stations and river cross section data were used to estimate Manning roughness coefficients and to compute stream discharges. When the discharges were estimated a stage-stage set of conditions was used for upstream-downstream boundary conditions. The research used the data from the upper Mississippi River. The hydraulic channel routings were performed by DWOPER (operational dynamic wave model). The global optimization program of SCE-UA was used to improve the roughness coefficient estimation module of the modified Newton-Raphson method in DWOPER. The results from SCE-US were better. For the case study of a flood, most estimated discharges except a few show errors within 10%.

  • PDF

Classification of Magnetic Resonance Imagery Using Deterministic Relaxation of Neural Network (신경망의 결정론적 이완에 의한 자기공명영상 분류)

  • 전준철;민경필;권수일
    • Investigative Magnetic Resonance Imaging
    • /
    • v.6 no.2
    • /
    • pp.137-146
    • /
    • 2002
  • Purpose : This paper introduces an improved classification approach which adopts a deterministic relaxation method and an agglomerative clustering technique for the classification of MRI using neural network. The proposed approach can solve the problems of convergency to local optima and computational burden caused by a large number of input patterns when a neural network is used for image classification. Materials and methods : Application of Hopfield neural network has been solving various optimization problems. However, major problem of mapping an image classification problem into a neural network is that network is opt to converge to local optima and its convergency toward the global solution with a standard stochastic relaxation spends much time. Therefore, to avoid local solutions and to achieve fast convergency toward a global optimization, we adopt MFA to a Hopfield network during the classification. MFA replaces the stochastic nature of simulated annealing method with a set of deterministic update rules that act on the average value of the variable. By minimizing averages, it is possible to converge to an equilibrium state considerably faster than standard simulated annealing method. Moreover, the proposed agglomerative clustering algorithm which determines the underlying clusters of the image provides initial input values of Hopfield neural network. Results : The proposed approach which uses agglomerative clustering and deterministic relaxation approach resolves the problem of local optimization and achieves fast convergency toward a global optimization when a neural network is used for MRI classification. Conclusion : In this paper, we introduce a new paradigm to classify MRI using clustering analysis and deterministic relaxation for neural network to improve the classification results.

  • PDF

Application of Resampling Method based on Statistical Hypothesis Test for Improving the Performance of Particle Swarm Optimization in a Noisy Environment (노이즈 환경에서 입자 군집 최적화 알고리즘의 성능 향상을 위한 통계적 가설 검정 기반 리샘플링 기법의 적용)

  • Choi, Seon Han
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.4
    • /
    • pp.21-32
    • /
    • 2019
  • Inspired by the social behavior models of a bird flock or fish school, particle swarm optimization (PSO) is a popular metaheuristic optimization algorithm and has been widely used from solving a complex optimization problem to learning a artificial neural network. However, PSO is difficult to apply to many real-life optimization problems involving stochastic noise, since it is originated in a deterministic environment. To resolve this problem, this paper incorporates a resampling method called the uncertainty evaluation (UE) method into PSO. The UE method allows the particles to converge on the accurate optimal solution quickly in a noisy environment by selecting the particles' global best position correctly, one of the significant factors in the performance of PSO. The results of comparative experiments on several benchmark problems demonstrated the improved performance of the propose algorithm compared to the existing studies. In addition, the results of the case study emphasize the necessity of this work. The proposed algorithm is expected to be effectively applied to optimize complex systems through digital twins in the fourth industrial revolution.

Improved Parallel Computation for Extended Edit Distances (개선된 확장편집거리 병렬계산)

  • Kim, Youngho;Sim, Jeong Seop
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.62-65
    • /
    • 2014
  • 근사문자열매칭 알고리즘은 검색엔진, 컴퓨터보안, 생물정보학 등 많은 분야에서 연구되고 있다. 근사문자열매칭에서는 거리함수를 이용하여 오차를 측정한다. 거리함수로는 해밍거리, 편집거리, 확장편집거리 등이 있다. 이때 확장편집거리는 mn) 시간과 공간에 계산할 수 있으며, 최근 m개의 쓰레드를 이용하여 O(m+n) 시간과 O(mn) 공간을 이용한 병렬알고리즘이 제시되었다. 본 논문에서는 기존의 확장편집거리를 계산하는 병렬알고리즘을 개선한 효율적인 병렬알고리즘을 제시한다. 기존의 병렬알고리즘을 최적화하고, 기존의 병렬알고리즘, 전역메모리만 사용한 최적화된 병렬알고리즘, 공유메모리를 활용한 최적화된 병렬알고리즘의 수행시간을 비교한다. 실험 결과, 개선된 병렬알고리즘이 기존의 병렬알고리즘보다 전처리단계에서 16 ~ 63배 이상, 모든 단계에 대해 19 ~ 24배 이상 빠른 수행시간을 보였다.

Development of a Parameter Estimation Support System for SWMM 5 (SWMM 5의 매개변수 추정지원 시스템 개발)

  • Jung, Tae Hun;Lee, Sangho
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.529-533
    • /
    • 2016
  • 미국 환경청의 SWMM 5(storm water management model 5)는 유역의 홍수유출 모의 및 연속 유출 모의를 할 수 있는 모형으로서 국내뿐만 아니라 세계적으로 많이 사용되고 있는 모형이다. SWMM 5와 같은 유역 유출모형에서 결과의 적절성을 향상시키기 위해서는 모형에 사용되는 매개변수를 올바르게 추정할 필요가 있다. 하지만, 외국의 정교한 유역 유출모형들이 우리나라에서 제대로 적용되고 있지 못하는 이유 중 하나는 적절한 매개변수의 추정이 이루어지지 못하고 있는 점이다. 이러한 문제를 해결하고자 SWMM 5의 매개변수 추정 지원 시스템을 개발하였다. SWMM 5의 매개변수 추정지원 시스템은 민감도 분석, 최적화 기법에 의한 모형 자동보정, 매개변수 할당 및 도움 모듈로 이루어져 있다. SWMM 5의 매개변수 추정 지원 시스템에 사용되는 최적화 기법은 전역최적화 기법 중 하나인 SCE-UA(shuffled complex evolution-University of Arizona) 이다. SWMM 5의 매개변수 추정 지원 시스템의 개발은 국내 수자원 기술자들의 SWMM 5에 대한 이해 및 활용도를 더욱 향상시켜줄 것으로 기대한다.

  • PDF