• Title/Summary/Keyword: 전압 제어

Search Result 3,507, Processing Time 0.035 seconds

A Study on the Two-switch Interleaved Active Clamp Forward Converter (투 스위치 인터리브 액티브 클램프 포워드 컨버터에 관한 연구)

  • Jung, Jae-Yeop;Bae, Jin-Yong;Kwon, Soon-Do;Lee, Dong-Hyun;Kim, Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.136-144
    • /
    • 2010
  • This paper presents the two-switch interleaved active clamp forward converter, which is mainly composed of two active clamp forward converters. Only two switches are required, and each one is the auxiliary switch for the other. So, the circuit complexity and cost are reduced and control is more simple. An additional resonant inductance is employed to achieve ZVS(Zero-Voltage-Switching) during the dead times. Interleaved output inductor currents diminish the voltage and current ripple. Accordingly, the smaller output filter and capacitors lower the converter volume. This research proposed the Two-switch interleaved Active Clamp Forward Converter characteristic. The principle of operation, feature and design considerations is illustrated and the validity of verified through the experiment with a 160[W] based experimental circuit.

Fabrication of anodic aluminum oxide nanotemplate using sputtered aluminum thin film (스퍼터 증착된 알루미늄 박막을 이용한 양극산화 알루미늄 나노템플레이트 제조)

  • Lee, Jae-Hyeong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.4
    • /
    • pp.923-928
    • /
    • 2010
  • Anodic aluminum oxide (AAO) nanotemplates for nano electronic device applications have been attracting increasing interest because of ease of fabrication, low cost process, and possible fabrication in large area. The size and density of the nanostructured materials can be controlled by changing the pore diameter and the pole density of AAO nanotemplate. In this paper, nano porous alumina films AAO nanotemplate was fabricated by second anodization method using sputterd Al films. In addition, effects of electrolyte temperature and anodization voltate on the microstructure of porous alumina films were investigated. As the electrolyte temperature was increased from $8^{\circ}C$ to $20^{\circ}C$, the growth rate of nanoporous alumina films was increased from 86.2 nm/min to 179.5 nm/min. The AAO nanotemplate fabricated with optimal condition had the mean pore diameter of 70 nm and the pore depth of $1\;{\mu}m$.

Implementation of Wireless Micro-Magnetic Detection System in the Conveyer Belt (컨베어 이송장치에서의 무선 미소자기감지 시스템 구현)

  • Lee, Young-Dong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.2975-2981
    • /
    • 2014
  • Micro-magnetic detection system is used to detect small particles in an automatic transmission valve body, which signal noise and time-delay may occurs in process of signal transmitting and filtering. In this paper, we present the design and implement of a micro-magnetic detection system based on wireless sensor networks in conveyer belt. Micro-magnetic detection system consists of five modules which are magnetic sensor detector, signal processing unit, wireless sensor networks, system control unit and system monitoring unit. Our experimental results show that the proposed wireless micro-magnetic detection system improves both accuracy and time delay compared to the wired system; therefore, it may apply for wireless micro-magnetic detection system by analysis of packet reception rate.

Design of Wideband Ku-band Low Noise Down-converter for Satellite Broadcasting (Ku-band 광대역 위성방송용 LNB 설계)

  • Hong, Do-Hyeong;Mok, Gwang-Yun;Park, Gi-Won;Rhee, Young-Chul
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.941-944
    • /
    • 2015
  • In this paper study for VSAT(very small aperture terminal) LNB(low noise block). ship LNB was demanded high stability and low noise figure. We designed FEM(Front-End Module) that was operated multi-band. FEM designed was constructed in a multi-band low noise receiver amplifier, a frequency converter, IF amplifier, Voltage Control Oscillator signal generating circuit four circuit using. To convert the multi-band 2.05GHz band, it generates four local oscillator signals, the four(band1, band2, band3, band4) designed to output an IF signal developed conversion apparatus, the conversion gain 64dB, noise figure 1dB or less, output P1dB 15dBm or more, phase noise showed -73dBc@100Hz.

  • PDF

A Study on Optimized Design of Wideband Pulsed Gamma-ray Detectors (광대역 펄스감마선 탐지센서 최적화설계에 관한 연구)

  • Jeong, Sang-hun;Lee, Nam-ho;Son, Eui-seung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.1121-1124
    • /
    • 2015
  • In this paper, we propose and demonstrate an optimal design of wideband pulsed gamma-ray detectors. Pulsed gamma-ray detectors are designed to operate in a dose rate of $1{\times}10^6{\sim}1{\times}10^8rad(Si)/s$. The input parameter was derived based on the energy ratio of pulse gamma-ray spectrum and the time of the energy. The sensor output current was calculated based on the dose rate control circuit. Using the N-type Epi Wafer, the optimum condition detection sensor was designed based on TCAD. The simulation results show that the optimal Epi layer thickness is 45um when applied voltage 3.3V. The doping concentrations are as follows : N-type is an Arsenic as $1{\times}10^{19}/cm^3$, P-type is a Boron as $1{\times}10^{19}/cm^3$ and Epi layer is Phosphorus as $3.4{\times}10^{12}/cm^3$. Pulse gamma-ray detector diameter is the 1.3mm.

  • PDF

Input AC Voltage Sensorless Control for a Three-Phase Z-Source PWM Rectifier (3상 Z-소스 PWM 정류기의 입력 AC 전압 센서리스 제어)

  • Han, Keun-Woo;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.3
    • /
    • pp.355-364
    • /
    • 2013
  • Respect to the input AC voltage and output DC voltage, conventional three-phase PWM rectifier is classified as the voltage type rectifier with boost capability and the current type rectifier voltage with buck capability. Conventional PWM rectifier can not at the same time the boost and buck capability and its bridge is weak in the shoot- through state. These problems can be solved by Z-source PWM rectifier which has all characteristic of voltage and current type PWM rectifier. By shoot-through duty ratio control, the Z-source PWM rectifier can buck and boost at the same time, also, there is no need to consider the dead time. This paper proposes the input AC voltage sensorless control method of a three-phase Z-source PWM rectifier in order to accomplish the unity input power factor and output DC voltage control. The proposed method is estimated the input AC voltage by using input AC current and output DC voltage, hence, the sensor for the input AC voltage detection is no needed. comparison of the estimated and detected input AC voltage, estimated phase angle of the input voltage, the output DC voltage response for reference value, unity power factor, FFT(Fast Fourier Transform) of the estimated voltage and efficiency are verified by PSIM simulation.

Stationary Reference Frame Voltage Controller for Single Phase Grid Connected Inverter for Stand Alone Mode (계통 연계형 단상 인버터의 단독 운전 모드를 위한 정지좌표계 전압 제어기)

  • Hong, Chang-Pyo;Kim, Hag-Wone;Cho, Kwan-Yuhl;Lim, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.6
    • /
    • pp.517-525
    • /
    • 2015
  • A grid connected inverter must be operated as the main electricity source under an isolated condition caused by the grid problem. Conventionally, the dual loop controller is used for the grid inverter, and the controller is used for control under the stand-alone mode. Generally, the PI(Proportional - Integral) controller is highly efficient under a synchronous reference frame, and stable control can be available. However, in this synchronous frame-based control, high-quality DSP is required because many sinusoidal calculations are necessary. When the PI control is conducted under a stationary frame, the controller constructions are made simple so that they work even with a low-price micro controller. However, given the characteristics of the PI controller, it should be designed with the phase of reference voltage considered. Otherwise, the phase delay of the output voltage can occur. Although the current controller also has a higher bandwidth than the voltage controller, distortion of the voltage is difficult to avoid only by the rapid response of the PI controller, as a sudden load change can occur in the nonlinear load. In this study, a new control method that solves the voltage controller bandwidth problem and rapidly copes with it even in the nonlinear load situation is proposed. The validity of the proposed method is proved by simulation and experimental results.

Self Oscillation DC/DC Converter with High Voltage Step Up Ratio (고전압 변환비의 자려 발진 DC/DC Converter)

  • Jung, Yong-Joon;Han, Sang-Kyoo;Hong, Sung-Soo;Roh, Chung-Wook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.220-227
    • /
    • 2009
  • A self oscillation DC/DC converter which has a very desirable characteristics of the high input-output voltage conversion ratio for high voltage DC power supply applications is proposed in this paper. The proposed converter is composed of one power switch, one inductor, several capacitors and diodes. Compared with conventional high-voltage DC/DC converters, it performs the high- voltage power conversion using the inductor instead of the bulky step-up transformer. Therefore, it can reduce the size of magnetic device and save the cost. Moreover, since it needs no control IC by using self oscillation circuit and has lower voltage stress on output diodes, it features a lower cost, simpler structure and more improved performance. Finally, a comparative analysis and experimental results are presented to show the validity of the proposed converter.

Design Optimization of a One-Stage Low Noise Amplifier below 20 GHz in 65 nm CMOS Technology (65 nm CMOS 기술을 적용한 20 GHz 이하의 1 단 저잡음 증폭기 설계)

  • Shen, Ye-Hao;Lee, Jae-Hong;Shin, Hyung-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.6
    • /
    • pp.48-51
    • /
    • 2009
  • One-stage low noise amplifier (LNA) using 65 nm RF CMOS technology below 20 GHz is designed to find the optimal bias voltage and optimal width of input transistor so that the maximum figure of merit (FoM) has been achieved. If the frequency is higher than 13 GHz, the amplifier needs two-stage to achieve the higher gain. If the frequency is lower than 5 GHz, one additional capacitor between gate and source should be added to control the power under the limitation. This paper summarizes one-stage LNA overall performances below 20 GHz and this approach can also be applied to other CMOS technology of LNA designs.

A $0.5{\mu}m$ CMOS FM Radio Receiver For Zero-Crossing Demodulator (Zero-Crossing 복조기를 위한 $0.5{\mu}m$ CMOS FM 라디오 수신기)

  • Kim, Sung-Woong;Kim, Young-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.2
    • /
    • pp.100-105
    • /
    • 2010
  • In this paper, a FM radio receiver integrated circuit has been developed based on $0.5{\mu}m$ CMOS process for Zero-Crossing FM demodulator over the 88MHz to 108MHz band. The receiver is designed with the low-IF architecture, and includes Low Noise Amplifier(LNA), Down-Conversion Mixer, Phase Locked Loop(PLL), IF LPF, and a comparator. The measured results of the LNA and Mixer show that the conversion gain of 23.2 dB, the input PldB of -14 dBm, and the noise figure of 15 dB. The measured analog block of the LPF and comparator show the voltage gain of over 89 dB, and the IF LPF can configure the passband from 600KHz to 1.3MHz with 100KHz step through the internal control register banks. The designed FM radio receiver operates at 4.5V with the total current consumption of 15.3mA, so the total power consumption is about 68.85mW. The commercial FM radio has been successfully received.