• Title/Summary/Keyword: 전산기 이용설계

Search Result 216, Processing Time 0.03 seconds

A study on the improvement of cleaning performance in bag-filter (여과집진기의 탈진 거동 개선에 관한 연구)

  • Hong, Sung-Gil;Kum, Young-Ho;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1571-1578
    • /
    • 2015
  • The cleaning characteristics of pulse air jet type cleaning system which is widely applied in the industries were identified by utilizing the computational fluid dynamics (CFD) and the cleaning performance in modified shape of dedusting unit was compared in this study. The review on each shape of cleaning part showed that the case of installing the nozzle on the blow tube (Case-3) and the case of installing the double intaking tube to the venturi (Case-4 and Case-5) were more excellent than the structure (Case-1). Also, the optimal venturi shape was designed and examined its applicability to the site in a pilot scale plant. A combined system of a blow tube and a venturi proposed by this study turned out to be very effective for concentrating an cleaning air compared to existing systems, such as using only blow tube and combines the blow tube and venturi. In addition, as a result of installing and testing a venturi proposed by this study, the cleaning frequency and cleaning time were much improved compared to a case of using a commercial venturi that is under use at the industrial sites.

Improvement in flow and noise performance of backward centrifugal fan by redesigning airfoil geometry (익형 형상 재설계를 통한 후향익 원심팬의 유동 및 소음성능 개선)

  • Jung, Minseung;Choi, Jinho;Ryu, Seo-Yoon;Cheong, Cheolung;Kim, Tae-hoon;Koo, Junhyo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.6
    • /
    • pp.555-565
    • /
    • 2021
  • The goal of this study is to improve flow and noise performances of existing backward-curved blade centrifugal fan system used for circulating cold air in a refrigerator freezer by optimally designing airfoil shape. The unique characteristics of the system is to drive cold airflow with two volute tongues in combination with duct system in a back side of a refrigerator without scroll housing generally used in a typical centrifugal fan system. First, flow and noise performances of existing fan system were evaluated experimentally. A P-Q curve was obtained using a fan performance tester in the flow experiment, and noise spectrum was measured in an anechoic chamber in the noise experiment. Then, flow characteristics were numerically analyzed by solving the three-dimensional unsteady Navier-Stokes equations and noise analysis was performed by solving the Ffowcs Williams and Hawkins equation with input from the flow simulation results. The validity of numerical results was confirmed by comparing them with the measured ones. Based on the verified numerical method, blade inlet and outlet angles were optimized for maximum flow rate using the two-factor central composite design of the response surface method. Finally, the flow and noise performances of a prototype manufactured with the optimum design were experimentally evaluated, which showed the improvement in flow and noise performance.

Design of Hazardous Fume Exhaust System in Vacuum Pressure Impregnation Process Using CFD (CFD를 이용한 진공가압함침공정 내 유해가스 배출시스템 설계)

  • Jang, Jungyu;Yoo, Yup;Park, Hyundo;Moon, Il;Lim, Baekgyu;Kim, Junghwan;Cho, Hyungtae
    • Korean Chemical Engineering Research
    • /
    • v.59 no.4
    • /
    • pp.521-531
    • /
    • 2021
  • Vacuum Pressure Impregnation (VPI) is a process that enhances physical properties by coating some types of epoxy resins on windings of stator used in large rotators such as generators and motors. During vacuum and pressurization of the VPI process, resin gas is generated by vaporization of epoxy resin. When the tank is opened for curing after finishing impregnation, resin gas is leaked out of the tank. If the leaked resin gas spreads throughout the workplace, there are safety and environmental problems such as fire, explosion and respiratory problems. So, exhaust system for resin gas is required during the process. In this study, a case study of exhaust efficiency by location of vent was conducted using Computational Fluid Dynamics (CFD) in order to design a system for exhausting resin gas generated by the VPI process. The optimal exhaust system of this study allowed more than 90% of resin gas to be exhausted within 1,800 seconds and reduced the fraction of resin gas below the Low Explosive Limit (LEL).

A Study on Activation Characteristics Generated by 9 MeV Electron Linear Accelerator for Container Security Inspection (컨테이너 보안 검색용 9 MeV 전자 선형가속기에서 발생한 방사화 특성평가에 관한 연구)

  • Lee, Chang-Ho;Kim, Jang-Oh;Lee, Yoon-Ji;Jeon, Chan-Hee;Lee, Ji-Eun;Min, Byung-In
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.5
    • /
    • pp.563-575
    • /
    • 2020
  • The purpose of this study is to evaluate the activation characteristics that occur in a linear accelerator for container security inspection. In the computer simulation design, first, the targets consisted of a tungsten (Z=74) single material target and a tungsten (Z=74) and copper (Z=29) composite target. Second, the fan beam collimator was composed of a single material of lead (Z=82) and a composite material of tungsten (Z-74) and lead (Z=82) depending on the material. Final, the concrete in the room where the linear accelerator was located contained magnetite type and impurities. In the research method, first, the optical neutron flux was calculated using the MCNP6 code as a F4 Tally for the linear accelerator and structure. Second, the photoneutron flux calculated from the MCNP6 code was applied to FISPACT-II to evaluate the activation product. Final, the decommissioning evaluation was conducted through the specific activity of the activation product. As a result, first, it was the most common in photoneutron targets, followed by a collimator and a concrete 10 cm deep. Second, activation products were produced as by-products of W-181 in tungsten targets and collimator, and Co-60, Ni-63, Cs-134, Eu-152, Eu-154 nuclides in impurity-containing concrete. Final, it was found that the tungsten target satisfies the permissible concentration for self-disposal after 90 days upon decommissioning. These results could be confirmed that the photoneutron yield and degree of activation at 9 MeV energy were insignificant. However, it is thought that W-181 generated from the tungsten target and collimator of the linear accelerator may affect the exposure when disassembled for repair. Therefore, this study presents basic data on the management of activated parts of a linear accelerator for container security inspection. In addition, When decommissioning the linear accelerator for container security inspection, it is expected that it can be used to prove the standard that permissible concentration of self-disposal.

Dynamic Behavior of Reactor Internals under Safe Shutdown Earthquake (안전정기지진하의 원자로내부구조물 거동분석)

  • 김일곤
    • Computational Structural Engineering
    • /
    • v.7 no.3
    • /
    • pp.95-103
    • /
    • 1994
  • The safety related components in the nuclear power plant should be designed to withstand the seismic load. Among these components the integrity of reactor internals under earthquake load is important in stand points of safety and economics, because these are classified to Seismic Class I components. So far the modelling methods of reactor internals have been investigated by many authors. In this paper, the dynamic behaviour of reactor internals of Yong Gwang 1&2 nuclear power plants under SSE(Safe Shutdown Earthquake) load is analyzed by using of the simpled Global Beam Model. For this, as a first step, the characteristic analysis of reactor internal components are performed by using of the finite element code ANSYS. And the Global Beam Model for reactor internals which includes beam elements, nonlinear impact springs which have gaps in upper and lower positions, and hydrodynamical couplings which simulate the fluid-filled cylinders of reactor vessel and core barrel structures is established. And for the exciting external force the response spectrum which is applied to reactor support is converted to the time history input. With this excitation and the model the dynamic behaviour of reactor internals is obtained. As the results, the structural integrity of reactor internal components under seismic excitation is verified and the input for the detailed duel assembly series model could be obtained. And the simplicity and effectiveness of Global Beam Model and the economics of the explicit Runge-Kutta-Gills algorithm in impact problem of high frequency interface components are confirmed.

  • PDF

Noise Protection Roof: Partial Opening Effect for Noise Reduction (철도용 터널형 방음벽 개발연구: 설계 방향)

  • Kim, Tae-Min;Kim, Jeung-Tae
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.6
    • /
    • pp.522-532
    • /
    • 2015
  • In the present study, a tunnel type soundproof wall with partial opening is proposed to reduce the environmental noise caused by railway vehicles traveling on bridges, which affects residents of high-rise apartment buildings; the study also attempts to minimize load due to wind and the weight of the wall. Applying the principles of computational fluid dynamics and structural mechanics, and the ray tracing method, a reduction in noise as well as of the overall weight of the soundproof walls is estimated. Analysis results show that the proposed soundproof wall with a partial opening weighs less, while reducing the wind loading by up to 30%. To prevent direct propagation of sound through openings in the wall, an acoustic louver, which is a type of silencer, could be considered for the opening. In order to achieve a similar noise effect with existing insulation material, the fluid flow and the insulation effect of the acoustic louver are analyzed. As the considered opening is in the range of 30~40% of the total length of the soundproof wall, the noise effect and wind load are reduced by 10dB and 25% respectively. Consequently, opening some part of tunnel type soundproof walls and installing louvers on the wall openings can have the effects of weight-reduction and reduced wind load. If a partial opening is applied with proper sound material application, a gain of an additional 5~10dB of noise reduction can be achieved.

Development of a Portable Device Based Wireless Medical Radiation Monitoring System (휴대용 단말 기반 의료용 무선 방사선 모니터링 시스템 개발)

  • Park, Hye Min;Hong, Hyun Seong;Kim, Jeong Ho;Joo, Koan Sik
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.3
    • /
    • pp.150-158
    • /
    • 2014
  • Radiation-related practitioners and radiation-treated patients at medical institutions are inevitably exposed to radiation for diagnosis and treatment. Although standards for maximum doses are recommended by the International Commission on Radiological Protection (ICPR) and the International Atomic Energy Agency (IAEA), more direct and available measurement and analytical methods are necessary for optimal exposure management for potential exposure subjects such as practitioners and patients. Thus, in this study we developed a system for real-time radiation monitoring at a distance that works with existing portable device. The monitoring system comprises three parts for detection, imaging, and transmission. For miniaturization of the detection part, a scintillation detector was designed based on a silicon photomultiplier (SiPM). The imaging part uses a wireless charge-coupled device (CCD) camera module along with the detection part to transmit a radiation image and measured data through the transmission part using a Bluetooth-enabled portable device. To evaluate the performance of the developed system, diagnostic X-ray generators and sources of $^{137}Cs$, $^{22}Na$, $^{60}Co$, $^{204}Tl$, and $^{90}Sr$ were used. We checked the results for reactivity to gamma, beta, and X-ray radiation and determined that the error range in the response linearity is less than 3% with regard to radiation strength and in the detection accuracy evaluation with regard to measured distance using MCNPX Code. We hope that the results of this study will contribute to cost savings for radiation detection system configuration and to individual exposure management.

Dust collection optimization of tunnel cleaning vehicle with cyclone-based prefilter (사이클론 전처리부를 지닌 터널집진차량의 집진효율 최적화)

  • Jeong, Wootae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.679-686
    • /
    • 2018
  • A new dust cleaning vehicle is needed to remove fine and ultra-fine particulate matter in subway tunnels. Therefore, the recently developed tunnel cleaning vehicle is equipped with an efficient suction system and cyclone-based prefilter to handle ultra-fine particles. To treat various sizes of particulate matter with an underbody suction system, this paper proposes a cyclone-based prefilter in the suction system and validates the dust removal efficiency through Computational Fluid Dynamics (CFD) analysis using ANSYS FLUENT. Using the created surface and volume mesh, various particle sizes, materials, and fan flow rates, the particles were tracked in the flow with a discrete phase model. As a result, the dust cleaning vehicle at a normal operational speed of 5km/h requires at least a fan flow rate of $1500m^3/min$ and 100mm of suction inlet height from the tunnel track floor. Those suction modules and cyclone-based prefilters in the dust cleaning vehicle reduces the dust accumulation load of the electric precipitator and helps remove the accumulated fine and ultra-fine dust in the subway tunnel.

Analysis of Gas-to-Liquid Phase Transformation of Hydrogen in Cryogenic Cooling Tube (초저온 냉각튜브 내 수소기체의 액체수소로의 상변환 분석)

  • Lee, Dae-Won;Nguyen, Hoang Hai;So, Myeong-Ki;Nah, In-Wook;Park, Dong-Wha;Kim, Kyo-Seon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.49-55
    • /
    • 2018
  • Under the era of energy crisis, hydrogen energy is considered as one of the most potential alternative energies. Liquid hydrogen has much higher energy density per unit volume than gas hydrogen and is counted as the excellent energy storage method. In this study, Navier-Stokes equations based on 2-phase model were solved by using a computational fluid dynamics program and the liquefaction process of gaseous hydrogen passing through a cryogenic cooling tube was analyzed. The copper with high thermal conductivity was assumed as the material for cryogenic cooling tube. For different inlet velocities of 5 m/s, 10 m/s and 20 m/s for hydrogen gas, the distributions of fluid temperature, axial and radial velocities, and volume fractions of gas and liquid hydrogens were compared. These research results are expected to be used as basic data for the future design and fabrication of cryogenic cooling tube to transform the hydrogen gas into liquid hydrogen.

Improvement of Energy Efficiency of Plants Factory by Arranging Air Circulation Fan and Air Flow Control Based on CFD (CFD 기반의 순환 팬 배치 및 유속조절에 의한 식물공장의 에너지 효율 향상)

  • Moon, Seung-Mi;Kwon, Sook-Youn;Lim, Jae-Hyun
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.57-65
    • /
    • 2015
  • As information technology fusion is accelerated, the researches to improve the quality and productivity of crops inside a plant factory actively progress. Advanced growth environment management technology that can provide thermal environment and air flow suited to the growth of crops and considering the characteristics inside a facility is necessary to maximize productivity inside a plant factory. Currently running plant factories are designed to rely on experience or personal judgment; hence, design and operation technology specific to plant factories are not established, inherently producing problems such as uneven crop production due to the deviation of temperature and air flow and additional increases in energy consumption after prolonged cultivation. The optimization process has to be set up in advance for the arrangement of air flow devices and operation technology using computational fluid dynamics (CFD) during the design stage of a facility for plant factories to resolve the problems. In this study, the optimum arrangement and air flow of air circulation fans were investigated to save energy while minimizing temperature deviation at each point inside a plant factory using CFD. The condition for simulation was categorized into a total of 12 types according to installation location, quantity, and air flow changes in air circulation fans. Also, the variables of boundary conditions for simulation were set in the same level. The analysis results for each case showed that an average temperature of 296.33K matching with a set temperature and average air flow velocity of 0.51m/s suiting plant growth were well-maintained under Case 4 condition wherein two sets of air circulation fans were installed at the upper part of plant cultivation beds. Further, control of air circulation fan set under Case D yielded the most excellent results from Case D-3 conditions wherein air velocity at the outlet was adjusted to 2.9m/s.