DOI QR코드

DOI QR Code

Design of Hazardous Fume Exhaust System in Vacuum Pressure Impregnation Process Using CFD

CFD를 이용한 진공가압함침공정 내 유해가스 배출시스템 설계

  • Jang, Jungyu (Green Materials and Processes R&D Group, Korea Institute of Industrial Technology) ;
  • Yoo, Yup (Green Materials and Processes R&D Group, Korea Institute of Industrial Technology) ;
  • Park, Hyundo (Green Materials and Processes R&D Group, Korea Institute of Industrial Technology) ;
  • Moon, Il (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Lim, Baekgyu (MVEC Co., Ltd.) ;
  • Kim, Junghwan (Green Materials and Processes R&D Group, Korea Institute of Industrial Technology) ;
  • Cho, Hyungtae (Green Materials and Processes R&D Group, Korea Institute of Industrial Technology)
  • 장준규 (한국생산기술연구원 친환경재료공정연구그룹) ;
  • 유엽 (한국생산기술연구원 친환경재료공정연구그룹) ;
  • 박현도 (한국생산기술연구원 친환경재료공정연구그룹) ;
  • 문일 (연세대학교 화공생명공학과) ;
  • 임백규 ((주)엠벡) ;
  • 김정환 (한국생산기술연구원 친환경재료공정연구그룹) ;
  • 조형태 (한국생산기술연구원 친환경재료공정연구그룹)
  • Received : 2021.04.22
  • Accepted : 2021.05.25
  • Published : 2021.11.01

Abstract

Vacuum Pressure Impregnation (VPI) is a process that enhances physical properties by coating some types of epoxy resins on windings of stator used in large rotators such as generators and motors. During vacuum and pressurization of the VPI process, resin gas is generated by vaporization of epoxy resin. When the tank is opened for curing after finishing impregnation, resin gas is leaked out of the tank. If the leaked resin gas spreads throughout the workplace, there are safety and environmental problems such as fire, explosion and respiratory problems. So, exhaust system for resin gas is required during the process. In this study, a case study of exhaust efficiency by location of vent was conducted using Computational Fluid Dynamics (CFD) in order to design a system for exhausting resin gas generated by the VPI process. The optimal exhaust system of this study allowed more than 90% of resin gas to be exhausted within 1,800 seconds and reduced the fraction of resin gas below the Low Explosive Limit (LEL).

진공가압함침공정(Vacuum Pressure Impregnation, VPI)은 발전기, 전동기 등 대형 회전기에 사용되는 고정자 권선에 에폭시 계열의 레진을 코팅시켜 물성을 강화하는 공정이다. VPI 공정 중 진공과 가압과정에서 에폭시 레진의 기화에 의해 레진 가스가 발생하고, 함침공정이 끝나고 경화를 위해 탱크 개방 시 레진 가스가 제거되지 않고 탱크 밖으로 유출된다. 유출된 레진 가스가 작업장 전체에 확산 시 화재, 폭발 및 호흡기 문제와 같은 안전 환경 문제가 있으므로 공정 내 레진 가스 배출시스템이 필요하다. 따라서, 본 연구에서는 VPI 공정에서 발생한 레진 가스를 배출하는 시스템을 설계하기 위해 전산유체역학(Computational Fluid Dynamics, CFD)을 이용하여 공기 유입구·배출구의 위치에 따른 배출효율에 대한 사례연구를 진행하였다. 본 연구의 최적의 배출시스템을 활용 시 1,800초 이내 90%이상의 레진 가스를 배출할 수 있으며, 레진 가스의 폭발하한계(Low Explosive Limit, LEL)이하로 레진 가스의 분율을 낮출 수 있었다.

Keywords

Acknowledgement

본 논문은 한국생산기술연구원 민간수탁활성화지원사업 기업체 에너지공정 최적화 지원사업(1/1) (Kitech-EE-20-0019)의 지원으로 수행한 연구입니다.

References

  1. Kim, H.-D., Lee, Y.-J. and Ju, Y.-H., "Characteristics of Insulation Aging in Large Generator Stator Windings," The Transactions of The Korean Institute of Electrical Engineers 58(7), 1375-1379(2009).
  2. Minami, Matsutaroh, et al. "Recent Insulation System For Low Voltage Rotary Machines." (1979).
  3. Kong, T.-S., "A Study on Insulation Property of VPI Type Generator Stator Winding Through the Case Analysis of Insulation Breakdown," The Transactions of the Korean Institute of Electrical Engineers P, 59(3), 311-316(2010). https://doi.org/10.5370/KIEEP.2010.59.3.311
  4. Duan, Jingkuan, et al. "Morphology and Thermal and Dielectric Behavior of Cycloaliphatic Epoxy/trimethacrylate Interpenetrating Polymer Networks for Vacuum-pressure-impregnation Electrical Insulation," Journal of Applied Polymer Science, 110(5), 3096-3106(2008). https://doi.org/10.1002/app.28835
  5. Hannu, Timo, et al. "IgE-mediated Occupational Asthma from Epoxy Resin," International Archives of Allergy and Immunology, 148(1), 41-44(2009). https://doi.org/10.1159/000151504
  6. Fawcett, I. W., Newman Taylor, A. J. and Pepys, J., "Asthma Due to Inhaled Chemical Agents-epoxy Resin Systems Containing Phthalic Acid Anhydride, Trimellitic Acid Anhydride and Triethylene Tetramine," Clinical & Experimental Allergy, 7(1), 1-14(1977). https://doi.org/10.1111/j.1365-2222.1977.tb01418.x
  7. Zhang, Zinan, et al. "Synthesis of CeO2-loaded Titania Nanotubes and Its Effect on the Flame Retardant Property of Epoxy Resin," Polymers for Advanced Technologies, 30(8), 2136-2142 (2019). https://doi.org/10.1002/pat.4646
  8. Zhang, Jianping, Wayde Johnson, and Tom Plikas, "Application of Computational Fluid Dynamics for Solving Ventilation Problems in Metallurgical Industrial Processes," International Journal of Ventilation, 16(3), 200-212(2017). https://doi.org/10.1080/14733315.2017.1299516
  9. Lee, K. Y. and Kim, K. W., "A Study on Numerical Analysis and Performance Improvement of Ventilation Systems in Coating Room," Journal of the Korea Academia-Industrial Cooperation Society, 14(5), 2086-2091(2013). https://doi.org/10.5762/KAIS.2013.14.5.2086
  10. Torano, J., et al. "Auxiliary Ventilation in Mining Roadways Driven with Roadheaders: Validated CFD Modelling of Dust Behaviour," Tunnelling and Underground Space Technology, 26(1), 201-210(2011). https://doi.org/10.1016/j.tust.2010.07.005
  11. Lee, J., Cho, S., Park, C., Cho, H. and Moon, I., Numerical analysis of hydrogen ventilation in a confined facility with various opening sizes, positions and leak quantities. In Computer Aided Chemical Engineering (Vol. 40, pp. 559-564). Elsevier (2017).
  12. Park, Chanho, et al. "Novel Evaluation Method for the Continuous Mixing Process of Bimodal Particles," Powder Technology, 344, 636-646(2019). https://doi.org/10.1016/j.powtec.2018.12.052
  13. Danielewicz, J., et al. "Three-dimensional Numerical Model of Heat Losses from District Heating Network Pre-insulated Pipes Buried in the Ground," Energy, 108, 172-184(2016). https://doi.org/10.1016/j.energy.2015.07.012
  14. Krawczyk, Piotr, Asfaw Beyene, and David MacPhee, "Fluid Structure Interaction of a Morphed Wind Turbine Blade," International Journal of Energy Research, 37(14), 1784-1793(2013). https://doi.org/10.1002/er.2991
  15. ANSYS_Fluent_Theory Guide (2019).
  16. Cho, Hyungtae, et al. "Numerical analysis for particle deposit formation in reactor cyclone of residue fluidized catalytic cracking," Industrial & Engineering Chemistry Research 52.22 : 7252-7258(2013). https://doi.org/10.1021/ie302509q
  17. Cho, Hyungtae, et al. "Uneven Distribution of Particle Flow in RFCC Reactor Riser," Powder Technology, 312, 113-123(2017). https://doi.org/10.1016/j.powtec.2017.01.025
  18. Bulat, Mikhail Pavlovich, and Pavel Victorovich Bulat, "Comparison of Turbulence Models in the Calculation of Supersonic Separated Flows," World Applied Sciences Journal, 27(10), 1263-1266(2013).
  19. Huang, S. H. and Li, Q. S., "Numerical Simulations of Wind-driven Rain on Building Envelopes Based on Eulerian Multiphase Model," Journal of Wind Engineering and Industrial Aerodynamics, 98(12), 843-857(2010). https://doi.org/10.1016/j.jweia.2010.08.003