• Title/Summary/Keyword: 전류 손실

Search Result 846, Processing Time 0.025 seconds

Analysis of Harmonic Characteristics at Buildings Electrical Installation (빌딩전기설비의 고조파 분석 연구)

  • Lee, Sang-Ick;Jeon, Jeong-Chay;Yoo, Jae-Geun;Kim, Dong-Ug;Lee, Ki-Yeon;Choi, Chung-Sug;Choe, Gyu-Ha
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.253-255
    • /
    • 2005
  • 3상 4선식의 빌딩전기설비에서 개인용 컴퓨터, 프린터, 팩스 및 각종 시험설비 둥의 비선형 전자부하로 인해 전압 및 전류파형을 왜곡시킨다. 이러한 파형 왜곡은 고조파로 불리고, 중성선 과열 및 변압기 손실을 유발시킨다. 본 논문에서는 대형 빌딩전기설비의 전압 및 전류 고조파 크기, 전압 및 전류 불평형 등의 고조파 특성을 비교 분석하였다. 분석 결과 고조파에 의한 상및 중성선에서의 심각한 파형 왜곡 문제와 삼상에서의 단상부하의 부적절한 분배로 인한 전류불평형이 심한 빌딩이 조사되었다. 따라서 빌딩전기설비에서 고조파로 인한 피해를 줄이기 위해 우선적으로 단상부하의 적절한 분배가 필요할 것이다.

  • PDF

The electrical conduction and DC breakdown properties of $(Sr.Pb)TiO_3$-based ceramic ($(Sr.Pb)TiO_3$계 세라믹의 전기전도 및 DC절연파괴 특성)

  • 김충혁;정일형;이준웅
    • Electrical & Electronic Materials
    • /
    • v.5 no.4
    • /
    • pp.421-429
    • /
    • 1992
  • 본 연구에서는 (Sr.Pb)TiO$_{3}$계 세라믹을 고압용 세라믹 캐패시터로 응용하기 위하여 일반적인 세라믹 소성법으로 제작하였으며 Bi$_{2}$O$_{3}$. 3TiO$_{2}$의 첨가량에 따른 전기전도 및 DC 절연파괴 특성을 조사하였다. 전도전류는 측정온도의 상승과 Bi$_{2}$O$_{3}$.3TiO$_{2}$의 첨가량이 증가함에 따라 상승하였다. 실온에서 전도전류는 전계에 따라 3영역으로 나누어졌다. 전계 15[kV/cm]이하의 영역에서는 오음의 법칙이 성립하는 이온전도가 나타났으며 전계 15[kV/cm]~40[kV/cm]인 영역에서는 전계에 강요된 강유전성 분극의 반전게에 기인하여 전류의 포화현상이 나타났다. 전계 40[kV/cm] 이상의 영역에서는 공간전하제한전류에 관련된 차일드법칙이 성립하였다. DC 절연파괴 강도는 측정온도의 상승과 Bi$_{2}$O$_{3}$.3TiO$_{2}$의 첨가량이 증가함에 따라 감소하였다. 온도 100[.deg.C] 이하에서는 전자적파괴가 일어났으며 100[.deg.C] 이상에서는 주울열과 유전손실에 의한 열적파괴가 나타났다.

  • PDF

Diagnosis of Induction Motor Faults Using Inverter Input Current Analysis (인버터 입력전류 분석을 이용한 유도전동기 고장진단)

  • Han, Jungho;Song, Joong-Ho;Choi, Kyu-Hyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.492-498
    • /
    • 2016
  • It is well known that since abrupt faults in induction motors tend to lead to subsequent faults and deterioration of the drive apparatus, motor faults may lead to several operating restrictions, such as security problems and economic loss. A lot of research has been done in the area of diagnosis to detect machine faults and to prevent catastrophic hazards in the motor drive system. This paper presents a new method of motor current signature analysis in which the DC-link current of the inverter-driven induction motor system, where a single current sensor is employed instead of three AC current sensors, is measured, and fast Fourier transform analysis is performed. This proposed method makes it possible to easily discern and clearly separate the motor fault current signature from the normal operation current flowing through the stator and rotor windings.

Low Power Current mode Signal Processing for Maritime data Communication (해상 데이터 통신을 위한 저전력 전류모드 신호처리)

  • Kim, Seong-Kweon;Cho, Seung-Il;Cho, Ju-Phil;Yang, Chung-Mo;Cha, Jae-sang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.4
    • /
    • pp.89-95
    • /
    • 2008
  • In the maritime communication, Orthogonal Frequency Division Multiplexing (OFDM) communication terminal should be operated with low power consumption, because the communication should be accomplished in the circumstance of disaster. Therefore, Low power FFT processor is required to be designed with current mode signal processing technique than digital signal processing. Current- to-Voltage Converter (IVC) is a device that converts the output current signal of FFT processor into the voltage signal. In order to lessen the power consumption of OFDM terminal, IVC should be designed with low power design technique and IVC should have wide linear region for avoiding distortion of signal voltage. To design of one-chip of the FFT LSI and IVC, IVC should have a small chip size. In this paper, we proposed the new IVC with wide linear region. We confirmed that the proposed IVC operates linearly within 0.85V to 1.4V as a function of current-mode FFT output range of -100~100[uA]. Designed IVC will contribute to realization of low-power maritime data communication using OFDM system.

  • PDF

High-performance 94 GHz Single Balanced Mixer Based On 70 nm MHEMT And DAML Technology (70 nm MHEMT와 DAML 기술을 이용한 우수한 성능의 94 GHz 단일 평형 혼합기)

  • Kim Sung-Chan;An Dan;Lim Byeong-Ok;Beak Tae-Jong;Shin Dong-Hoon;Rhee Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.4 s.346
    • /
    • pp.8-15
    • /
    • 2006
  • In this paper, the 94 GHz, low conversion loss, and high isolation single balanced mixer is designed and fabricated using GaAs-based metamorphic high electron mobility transistors (MHEMTs) with 70 nm gate length and the hybrid ring coupler with the micromachined transmission lines, dielectric-supported air-gapped microstrip lines (DAMLs). The 70 nm MHEMT devices exhibit DC characteristics with a drain current density of 607 mA/mm an extrinsic transconductance of 1015 mS/mm. The current gain cutoff frequency ($f_T$) and maximum oscillation frequency ($f_{max}$) are 320 GHz and 430 GHz, respectively. The fabricated hybrid ring coupler shows wideband characteristics of the coupling loss of $3.57{\pm}0.22dB$ and the transmission loss of $3.80{\pm}0.08dB$ in the measured frequency range of 85 GHz to 105 GHz. This mixer shows that the conversion loss and isolation characteristics are $2.5dB{\sim}>2.8dB$ and under -30 dB, respectively, in the range of $93.65GHz{\sim}94.25GHz$. At the center frequency of 94 GHz, this mixer shows the minimum conversion loss of 2.5 dB at a LO power of 6 dBm To our knowledge, these results are the best performances demonstrated from 94 GHz single balanced mixer utilizing GaAs-based HEMTs in terms of conversion loss as well as isolation characteristics.

Efficiency Optimization Control of SynRM Drive with HAI Controller (HAI 제어기에 의한 SynRM 드라이브의 효율 최적화 제어)

  • Jung, Dong-Wha;Choi, Jung-Sik;Ko, Jae-Sub
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.4
    • /
    • pp.98-106
    • /
    • 2006
  • This paper is proposed an efficiency optimization control algorithm for a synchronous reluctance motor which minimizes the cower and iron losses. The design of the speed controller based on adaptive fuzzy-neural networks(AFNN) controller that is implemented using fuzzy control and neural networks. There exists a variety of combinations of d and f-axis current which provide a specific motor torque. The objective of the efficiency optimization controller is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. It is shown that the current components which directly govern the torque production have been very well regulated by the efficiency optimization control scheme. The proposed algorithm allows the electromagnetic losses in variable speed and torque drives to be reduced while keeping good torque control dynamics. The control performance of the hybrid artificial intelligent(HAI) controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm

Boost AC-DC Converter of High Power Factor and High Efficiency (고역률 고효율 승압형 AC-DC 컨버터)

  • Kwak, Dong-Kurl;Kim, Choon-Sam;Park, Ha-Yong;Shim, Jae-Sun;Shim, Sang-Heung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.7
    • /
    • pp.45-52
    • /
    • 2005
  • This paper is studied on boost AC-DC converter of high power factor and high efficiency for discontinuous current control. The converter operated in discontinuous current control eliminates the complicated circuit control requirement, and reduces a number of components. The input current waveform in proposed circuit is got to be a discontinuous sinusoidal form in proportion to magnitude of ac input voltage under the constant duty cycle switching. Therefore, the input power factor is nearly unity and the control circuit is simple. Also the switching devices in a proposed circuit are operated with soft switching by the partial resonant method. The result is that the switching loss is very low and the efficiency of system is high. The partial resonant circuit makes use of a inductor using step up and loss-less snubber capacitor. The circuit topology of the converter is simplified. Some simulative results on computer and experimental results are included to confirm the validity of the analytical results.

A Study on the Method of preventing from Reduction of AF Track Circuit Signal Current on a Ferroconcrete Roadbed (철근콘크리트 도상에서 AF 궤도회로 신호전류 저감방지대책에 관한 연구)

  • Hong, Hyo-Sik;Yoo, Kwang-Kiun;Rho, Sung-Chan
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.5
    • /
    • pp.500-503
    • /
    • 2010
  • Until now, the track circuit with railroad which is a part of an electrical circuit wad used only for the detection of the train location, but as train speed is up to be higher, in order to overcome the limits of ground signal system the railway signal system has changed from the ground signal system to a cab signal system. The power source of the track circuit has also changed from a direct current or a high voltage impulse to an alternating current with high frequency which is a part of the audio frequency. To improve the maintenanability and according to the environment condition, the railway roadbed is rapidly changed to the ferroconcrete roadbed. In case of a track circuit to use an alternating current with high frequency as power source at a ferroconcrete roadbed, the characteristic of the track circuit is brought on a change from a loss of the magnetic combination instead of a leakage current from electric insulation which was caused by the reinforcing iron pod with lattice shape for durability. This paper is shown the influence and the loss of the signal current at AF track circuit on a ferroconcrete in the simulation sheets and presented a proposal for the preventive method from reduction of signal current.

Improved AC/DC PFC ZVT Boost Converter (개선된 AC/DC PFC ZVT Boost 컨버터)

  • Ryu, Jong-Gyu;Kim, Yong;Bae, Jin-Yong;Lee, Eun-Young;Cho, Kyu-Man
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.8
    • /
    • pp.62-69
    • /
    • 2005
  • This paper presents the improved AC/DC PFC(Power-Factor-Correction) ZVT(Zero-Voltage-Transition) Boost Converter. The conventional AC/DC PFC ZVT Boost Converter minimizes the switching loss of the main switch within all of the load range. That is because AC/DC PFC ZVT Boost converter makes the main switch and the auxiliary switch turn on simultaneously so that it makes ZVS (Zero-Voltage-Switching) possible at the light load. However, it has two problems that ale large loss of the auxiliary switch and the increasing of the reverse current of the main switch. Therefore this research presents high efficiency to reduce the current stress of the auxiliary switch and the reverse current of main switch by adding a diode to the conventional ZVT converter. The prototype of 640[W], 100[kHz] system using MOSFET is implemented for this experimental verification.

An Improved ZVS Partial Series Resonant DC/DC Converter with Low Conduction Losses (저 도통손실 특성을 갖는 향상된 영전압 부분 직렬 공진형 DC/DC 컨버터)

  • 김의성;이동윤;현동석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.386-393
    • /
    • 2000
  • This paper presents an improved ZVS partial series resonant DC/DC converter (PSRC) with low conduction losses, suitable for high power and high frequency applications. The proposed PSRC have advantages of zero-voltage-switching (ZVS) of main switches for entire load ranges low conduction losses of main switches by decreasing current stresses. Also the reduction of the effective duty cycle is not occurred during the resonant period of the main circuit because the auxiliary circuit of the proposed converter is placed out of the main power path. The auxiliary circuit is composed with passive components, which are an inductor, two capacitors, two diodes, and a saturable inductor. An improved ZVS PSRC has so much characteristics with respect to the overall system efficiency and to the reduction of current stresses. The operation principles of the proposed converter are explained in detail and the various simulated and experimental results show the validity of the proposed converter.

  • PDF