• Title/Summary/Keyword: 전력전자

Search Result 15,606, Processing Time 0.036 seconds

Four-Channel Differential CMOS Optical Transimpedance Amplifier Arrays for Panoramic Scan LADAR Systems (파노라믹 스캔 라이다 시스템용 4-채널 차동 CMOS 광트랜스 임피던스 증폭기 어레이)

  • Kim, Sang Gyun;Jung, Seung Hwan;Kim, Seung Hoon;Ying, Xiao;Choi, Hanbyul;Hong, Chaerin;Lee, Kyungmin;Eo, Yun Seong;Park, Sung Min
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.9
    • /
    • pp.82-90
    • /
    • 2014
  • In this paper, a couple of 4-channel differential transimpedance amplifier arrays are realized in a standard 0.18um CMOS technology for the applications of linear LADAR(laser detection and ranging) systems. Each array targets 1.25-Gb/s operations, where the current-mode chip consists of current-mirror input stage, a single-to-differential amplifier, and an output buffer. The input stage exploits the local feedback current-mirror configuration for low input resistance and low noise characteristics. Measurements demonstrate that each channel achieves $69-dB{\Omega}$ transimpedance gain, 2.2-GHz bandwidth, 21.5-pA/sqrt(Hz) average noise current spectral density (corresponding to the optical sensitivity of -20.5-dBm), and the 4-channel total power dissipation of 147.6-mW from a single 1.8-V supply. The measured eye-diagrams confirms wide and clear eye-openings for 1.25-Gb/s operations. Meanwhile, the voltage-mode chip consists of inverter input stage for low noise characteristics, a single-to-differential amplifier, and an output buffer. Test chips reveal that each channel achieves $73-dB{\Omega}$ transimpedance gain, 1.1-GHz bandwidth, 13.2-pA/sqrt(Hz) average noise current spectral density (corresponding to the optical sensitivity of -22.8-dBm), and the 4-channel total power dissipation of 138.4-mW from a single 1.8-V supply. The measured eye-diagrams confirms wide and clear eye-openings for 1.25-Gb/s operations.

Design of DVB-T/H SiP using IC-embedded PCB Process (IC-임베디드 PCB 공정을 사용한 DVB-T/H SiP 설계)

  • Lee, Tae-Heon;Lee, Jang-Hoon;Yoon, Young-Min;Choi, Seog-Moon;Kim, Chang-Gyun;Song, In-Chae;Kim, Boo-Gyoun;Wee, Jae-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.9
    • /
    • pp.14-23
    • /
    • 2010
  • This paper reports the fabrication of a DVB-T/H System in Package (SiP) that is able to receive and process the DVB-T/H signal. The DVB-T/H is the European telecommunication standard for Digital Video Broadcasting (DVB). An IC-embedded Printed Circuit Board (PCB) process, interpose a chip between PCB layers, has applied to the DVB-T/H SiP. The chip inserted in DVB-T/H SiP is the System on Chip (SoC) for mobile TV. It is comprised of a RF block for DVB-T/H RF signal and a digital block to convert received signal to digital signal for an application processor. To operate the DVB-T/H IC, a 3MHz DC-DC converter and LDO are on the DVB-T/H SiP. And a 38.4MHz crystal is used as a clock source. The fabricated DVB-T/H SiP form 4 layers which size is $8mm{\times}8mm$. The DVB-T/H IC is located between 2nd and 3rd layer. According to the result of simulation, the RF signal sensitivity is improved since the layout modification of the ground plane and via. And we confirmed the adjustment of LC value on power transmission is necessary to turn down the noise level in a SiP. Although the size of a DVB-T/H SiP is decreased over 70% than reference module, the power consumption and efficiency is on a par with reference module. The average power consumption is 297mW and the efficiency is 87%. But, the RF signal sensitivity is declined by average 3.8dB. This is caused by the decrease of the RF signal sensitivity which is 2.8dB, because of the noise from the DC-DC converter.

Design of CMOS Multifunction ICs for X-band Phased Array Systems (CMOS 공정 기반의 X-대역 위상 배열 시스템용 다기능 집적 회로 설계)

  • Ku, Bon-Hyun;Hong, Song-Cheol
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.6-13
    • /
    • 2009
  • For X-band phased array systems, a power amplifier, a 6-bit phase shifter, a 6-bit digital attenuator, and a SPDT transmit/receive (T/R) switch are fabricated and measured. All circuits are demonstrated by using CMOS 0.18 um technology. The power amplifier has 2-stage differential and cascade structures. It provides 1-dB gain-compressed output power ($P_{1dB}$) of 20 dBm and power-added-efficiency (PAE) of 19 % at 8-11 GHz frequencies. The 6-bit phase shifter utilizes embedded switched filter structure which consists of nMOS transistors as a switch and meandered microstrip lines for desired inductances. It has $360^{\circ}$ phase-control range and $5.6^{\circ}$ phase resolution. At 8-11 GHz frequencies, it has RMS phase and amplitude errors are below $5^{\circ}$ and 0.8 dB, and insertion loss of $-15.7\;{\pm}\;1,1\;dB$. The 6-bit digital attenuator is comprised of embedded switched Pi-and T-type attenuators resistive networks and nMOS switches and employes compensation circuits for low insertion phase variation. It has max. attenuation of 31.5 dB and 0.5 dB amplitude resolution. Its RMS amplitude and phase errors are below 0.4 dB and $2^{\circ}$ at 8-11 GHz frequencies, and insertion loss is $-10.5\;{\pm}\;0.8\;dB$. The SPDT T/R switch has series and shunt transistor pairs on transmit and receive path, and only one inductance to reduce chip area. It shows insertion loss of -1.5 dB, return loss below -15 dB, and isolation about -30 dB. The fabricated chip areas are $1.28\;mm^2$, $1.9mm^2$, $0.34\;mm^2$, $0.02mm^2$, respectively.

The Photovoltaic Effect of Iodine-Doped Metal Free Phthalocyanine/ZnO System (Ⅰ) (요오드가 도핑된 무금속 프탈로시아닌/산화아연계의 광기전력 효과(Ⅰ))

  • Heur, Soun-Ok;Kim, Young-Soon;Park, Yoon-Chang
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.3
    • /
    • pp.163-175
    • /
    • 1995
  • Metal free phthalocyanine($H_2Pc$) partially doped with iodine, $H_2Pc(I)x$, has been made to improve photosensitizing efficiency of ZnO/$H_2Pc$. The content of iodine dopant level(x) for $H_2Pc(I)x$ upon $H_2Pc$ polymorphs was characterized as ${\chi}-H_2Pc(I)_{0.92}$ and ${\beta}-H_2Pc(I)_{0.96}$ by elemental analysis. Characterization of iodine-oxidized $H_2Pc$ were investigated by TGA (thermogravimetric analysis), UV-Vis, FT-IR, Raman and ESR (electron spin resonance) spectrum, and the adsorption properties of $H_2Pc(I)x$ on ZnO were characterized by means of Raman and ESR studies. TGA for $H_2Pc(I)x$ showed a complete loss of iodine at approximately 265$^{\circ}C$ and the Raman spectrum of $H_2Pc(I)x$ and ZnO/$H_2Pc(I)x$ at 514.5 nm showed characteristic $I_3^-$ patterns in the frequency region 90∼550 $cm^{-1}$. ZnO/$H_2Pc(I)x$ exhibited a very intense and narrow ESR signal at $g=2.0025{\pm}0.0005$ compared to $H_2Pc$/ZnO. Iodine doped ZnO/$H_2Pc(I)x$ showed a better photosensitivity compared to iodine undoped ZnO/$H_2Pc$. That is, the surface photovoltage of ${\chi}-H_2Pc(I)_{0.92}$/ZnO was approximately 31 times greater than that of ZnO/${\chi}-H_2Pc$ and ZnO/${\beta}-H_2Pc(I)_{0.96}$ was 5 times more efficient than ZnO/${\beta}-H_2Pc$ at 670 nm. And the dependence of photosensitizing effect upon $H_2Pc$ polymorphs was exhibited that the surface photovoltage of ZnO/${\chi}-H_2Pc(I)_{0.92}$ was approximately 5 times greater than ZnO/${\beta}-H_2Pc(I)_{0.96}$ at 670 nm. Therefore Iodine doping of H_2Pc$ resulted in increase in photoconductivity of $H_2Pc$ and photovoltaic effect of ZnO/$H_2Pc$ in the visible region.

  • PDF

Properties of Indium Tin Oxide Thin Films According to Oxygen Flow Rates by γ-FIB System (γ-FIB 시스템을 이용한 산소 유량 변화에 따른 산화인듐주석 박막의 특성 연구)

  • Kim, D.H.;Son, C.H.;Yun, M.S.;Lee, K.A.;Jo, T.H.;Seo, I.W.;Uhm, H.S.;Kim, I.T.;Choi, E.H.;Cho, G.S.;Kwon, G.C.
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.6
    • /
    • pp.333-341
    • /
    • 2012
  • Indium Tin Oxide (ITO) thin films were prepared by RF magnetron sputtering with different flow rates of $O_2$ gas from 0 to 12 sccm. Electrical and optical properties of these films were characterized and analyzed. ITO deposited on soda lime glass and RF power was 2 kW, frequency was 13.56 MHz, and working pressure was $1.0{\times}10^{-3}$ Torr, Ar gas was fixed at 1,000 sccm. The transmittance was measured at 300~1,100 nm ranges by using Photovoltaic analysis system. Electrical properties were measured by Hall measurement system. ITO thin films surface were measured by Scanning electron microscope. Atomic force microscope surface roughness scan for ITO thin films. ITO thin films secondary electron emission coefficient(${\gamma}$) was measured by ${\gamma}$-Focused ion beam. The resistivity is about $2.4{\times}10^{-4}{\Omega}{\cdot}cm$ and the weighted average transmittance is about 84.93% at 3 sccm oxygen flow rate. Also, we investigated Work-function of ITO thin films by using Auger neutralization mechanism according to secondary electron emission coefficient(${\gamma}$) values. We confirmed secondary electron emission peak at 3 sccm oxygen flow rate.

A Design of PLL and Spread Spectrum Clock Generator for 2.7Gbps/1.62Gbps DisplayPort Transmitter (2.7Gbps/1.62Gbps DisplayPort 송신기용 PLL 및 확산대역 클록 발생기의 설계)

  • Kim, Young-Shin;Kim, Seong-Geun;Pu, Young-Gun;Hur, Jeong;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.2
    • /
    • pp.21-31
    • /
    • 2010
  • This paper presents a design of PLL and SSCG for reducing the EMI effect at the electronic machinery and tools for DisplayPort application. This system is composed of the essential element of PLL and Charge-Pump2 and Reference Clock Divider to implement the SSCG operation. In this paper, 270MHz/162MHz dual-mode PLL that can provide 10-phase and 1.35GHz/810MHz PLL that can reduce the jitter are designed for 2.7Gbps/162Gbps DisplayPort application. The jitter can be reduced drastically by combining 270MHz/162MHz PLL with 2-stage 5 to 1 serializer and 1.35GHz PLL with 2 to 1 serializer. This paper propose the frequency divider topology which can share the divider between modes and guarantee the 50% duty ratio. And, the output current mismatch can be reduced by using the proposed charge-pump topology. It is implemented using 0.13 um CMOS process and die areas of 270MHz/162MHz PLL and 1.35GHz/810MHz PLL are $650um\;{\times}\;500um$ and $600um\;{\times}\;500um$, respectively. The VCO tuning range of 270 MHz/162 MHz PLL is 330 MHz and the phase noise is -114 dBc/Hz at 1 MHz offset. The measured SSCG down spread amplitude is 0.5% and modulation frequency is 31kHz. The total power consumption is 48mW.

Structural Decomposition Analysis on Changes in Industrial Energy Use in Korea, 1980~2000 (구조분해분석을 통한 국내 산업별 에너지 소비 변화요인 연구)

  • Kim, Jin-Soo;Heo, Eunnyeong
    • Environmental and Resource Economics Review
    • /
    • v.14 no.2
    • /
    • pp.257-290
    • /
    • 2005
  • Korean energy use in industrial sector has increased more rapidly than other sectors during 1980~2000 periods. Relatively higher increases in industrial sector energy consumption raise questions whether government policy of rationalization of industrial energy use has been effective. In this study, we use 80-85-90 and 90-95-00 constant price input-output table to analyze increases in industrial energy use. Using an adjusted version of structural decomposition model introduced by Chen and Rose (1990), we decompose Changes of energy use into 17 elements. We classify entire industry sector into 32 sectors including four energy sectors (coal and coal products, refined petroleum, electricity and town gas). We then analyze changes of energy use by industrial level to check differences among industrial energy demand structures. Finally, we compare three industries, electronic product manufacturing, metal manufacturing and construction, that represent technology and capital intensive, energy and material intensive and labor and capital intensive industry. As results, we find that high energy using industries make the most effort to reduce energy use. Primary metal, petrochemical and mon-metal industries show improvements in elements such as energy and material productivity, energy and material imports, energy substitution and material substitutions towards energy saving. These results imply that although those industries are heavy users of energy, they put the best effort to reduce energy use relative to other industries. We find various patterns of change in industrial energy use at industrial level. To reduce energy use, electronic product manufacturing industry needs more effort to improve technological change element while construction industry needs more effort to improve material input structure element.

  • PDF

Evaluation of Image Quality for Various Electronic Portal Imaging Devices in Radiation Therapy (방사선치료의 다양한 EPID 영상 질평가)

  • Son, Soon-Yong;Choi, Kwan-Woo;Kim, Jung-Min;Jeong, Hoi-Woun;Kwon, Kyung-Tae;Cho, Jeong-Hee;Lee, Jea-Hee;Jung, Jae-Yong;Kim, Ki-Won;Lee, Young-Ah;Son, Jin-Hyun;Min, Jung-Whan
    • Journal of radiological science and technology
    • /
    • v.38 no.4
    • /
    • pp.451-461
    • /
    • 2015
  • In megavoltage (MV) radiotherapy, delivering the dose to the target volume is important while protecting the surrounding normal tissue. The purpose of this study was to evaluate the modulation transfer function (MTF), the noise power spectrum (NPS), and the detective quantum efficiency (DQE) using an edge block in megavoltage X-ray imaging (MVI). We used an edge block, which consists of tungsten with dimensions of 19 (thickness) ${\times}$ 10 (length) ${\times}$ 1 (width) $cm^3$ and measured the pre-sampling MTF at 6 MV energy. Various radiation therapy (RT) devices such as TrueBeam$^{TM}$ (Varian), BEAMVIEW$^{PLUS}$ (Siemens), iViewGT (Elekta) and Clinac$^{(R)}$iX (Varian) were used. As for MTF results, TrueBeam$^{TM}$(Varian) flattening filter free(FFF) showed the highest values of $0.46mm^{-1}$ and $1.40mm^{-1}$ for MTF 0.5 and 0.1. In NPS, iViewGT (Elekta) showed the lowest noise distribution. In DQE, iViewGT (Elekta) showed the best efficiency at a peak DQE and $1mm^{-1}DQE$ of 0.0026 and 0.00014, respectively. This study could be used not only for traditional QA imaging but also for quantitative MTF, NPS, and DQE measurement for development of an electronic portal imaging device (EPID).

Fabrication of Portable Self-Powered Wireless Data Transmitting and Receiving System for User Environment Monitoring (사용자 환경 모니터링을 위한 소형 자가발전 무선 데이터 송수신 시스템 개발)

  • Jang, Sunmin;Cho, Sumin;Joung, Yoonsu;Kim, Jaehyoung;Kim, Hyeonsu;Jang, Dayeon;Ra, Yoonsang;Lee, Donghan;La, Moonwoo;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.249-254
    • /
    • 2022
  • With the rapid advance of the semiconductor and Information and communication technologies, remote environment monitoring technology, which can detect and analyze surrounding environmental conditions with various types of sensors and wireless communication technologies, is also drawing attention. However, since the conventional remote environmental monitoring systems require external power supplies, it causes time and space limitations on comfortable usage. In this study, we proposed the concept of the self-powered remote environmental monitoring system by supplying the power with the levitation-electromagnetic generator (L-EMG), which is rationally designed to effectively harvest biomechanical energy in consideration of the mechanical characteristics of biomechanical energy. In this regard, the proposed L-EMG is designed to effectively respond to the external vibration with the movable center magnet considering the mechanical characteristics of the biomechanical energy, such as relatively low-frequency and high amplitude of vibration. Hence the L-EMG based on the fragile force equilibrium can generate high-quality electrical energy to supply power. Additionally, the environmental detective sensor and wireless transmission module are composed of the micro control unit (MCU) to minimize the required power for electronic device operation by applying the sleep mode, resulting in the extension of operation time. Finally, in order to maximize user convenience, a mobile phone application was built to enable easy monitoring of the surrounding environment. Thus, the proposed concept not only verifies the possibility of establishing the self-powered remote environmental monitoring system using biomechanical energy but further suggests a design guideline.

The research and Development trends of Telecommunications of the End of the 20th Century(Present) and the Beginning of the 21st Century(Future) (20세기 말과 21세기 초의 전기통신의 연구개발동향)

  • 조규심
    • Journal of the Korean Professional Engineers Association
    • /
    • v.29 no.2
    • /
    • pp.15-23
    • /
    • 1996
  • With the ever-increasing importance of high-speed information in society as we move towards the 21 st century, telecommunication laboratories of advanced nations are pressing forward with research and development aimed at implementing its W & P(Visual Intelligent and Personal) services and construction of a new network to support them. In legals to the former, based on a long-term view of technological and market trends, those laboratories are researching and developing services that will make possible an effective progression from the development of services that answer to potential needs towards the full-scale implementation of VI & P services. In regards to the latter, these laboratories are responding in a flexible manner to the increasing diversity and disposal of the communications environment by separating the network into a transmission system and a versatile information control/conversion -ion system and laboratories are working at enhancing the performance of both. Within these board aims, the laboratories are currently focusing our attention in three areas : the technology for a high-speed broadband transmission system featuring optical frequency multiplexing and ATM techniques, network and software technologies for advanced information control and conversion, and technology for constructing a new access network that can provide a comprehensive range of multimedia services. This article describes the laboratories' concept of how VI & P services will develop in the future, and the latest trends in the field of communications. It also describes the ideal configuration of the new network and discusses the important technological aspects of how it is to be constructed. Finally, it presents the results of the laboratories'recent research which include some innovative work, point out the areas requiring future investigation.

  • PDF