• Title/Summary/Keyword: 전략패턴

Search Result 511, Processing Time 0.028 seconds

Improvement of the Efficacy Test Methods for Hand Sanitizers (Gel, Liquid, and Wipes): Emerging Trends from in vivo/ex vivo Test Strategies for Application in the Hand Microbiome (손소독제(겔형, 액제형, 와이프형)의 효능 평가법 개선: 평가 전략 연구 사례 및 손 균총 정보 활용 등 최근 동향)

  • Yun O;Ji Seop Son;Han Sol Park;Young Hoon Lee;Jin Song Shin;Da som Park;Eun NamGung;Tae Jin Cho
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • Skin sanitizers are effective in killing or removing pathogenic microbial contaminants from the skin of food handlers, and the progressive growth of consumer interest in personal hygiene tends to drive product diversification. This review covers the advances in the application of efficacy tests for hand sanitizers to suggest future perspectives to establish an assessment system that is optimized to each product type (gel, liquid, and wipes). Previous research on the in vivo simulative test of actual consumer use has adopted diverse experimental conditions regardless of the product type. This highlights the importance of establishing optimal test protocols specialized for the compositional characteristics of sanitizers through the comparative analysis of test methods. Although the operational conditions of the mechanical actions associated with wiping can affect the efficacy of the removal and/or the inactivation of target microorganisms from the skin's surface, currently there is a lack of standardized use patterns for the exposure of hand sanitizing wipes to skin. Thus, major determinants affecting the results from each step of the overall assessment procedures [pre-treatment - exposure of sanitizers - microbial recovery] should be identified to modify current protocols and develop novel test methods. The ex vivo test, designed to overcome the limited reproducibility of in vivo human trials, is also expected to replicate the environment for the contact of sanitizers targeting skin microorganisms. Recent progress in the area of skin microbiome research revealed distinct microbial characteristics and distribution patterns after the application of sanitizers on hands to establish the test methods with the perspectives on the antimicrobial effects at the community level. The future perspectives presented in this study on the improvement of efficacy test methods for hand sanitizers can also contribute to public health and food safety through the commercialization of effective sanitizer products.

A Methodology of Customer Churn Prediction based on Two-Dimensional Loyalty Segmentation (이차원 고객충성도 세그먼트 기반의 고객이탈예측 방법론)

  • Kim, Hyung Su;Hong, Seung Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.111-126
    • /
    • 2020
  • Most industries have recently become aware of the importance of customer lifetime value as they are exposed to a competitive environment. As a result, preventing customers from churn is becoming a more important business issue than securing new customers. This is because maintaining churn customers is far more economical than securing new customers, and in fact, the acquisition cost of new customers is known to be five to six times higher than the maintenance cost of churn customers. Also, Companies that effectively prevent customer churn and improve customer retention rates are known to have a positive effect on not only increasing the company's profitability but also improving its brand image by improving customer satisfaction. Predicting customer churn, which had been conducted as a sub-research area for CRM, has recently become more important as a big data-based performance marketing theme due to the development of business machine learning technology. Until now, research on customer churn prediction has been carried out actively in such sectors as the mobile telecommunication industry, the financial industry, the distribution industry, and the game industry, which are highly competitive and urgent to manage churn. In addition, These churn prediction studies were focused on improving the performance of the churn prediction model itself, such as simply comparing the performance of various models, exploring features that are effective in forecasting departures, or developing new ensemble techniques, and were limited in terms of practical utilization because most studies considered the entire customer group as a group and developed a predictive model. As such, the main purpose of the existing related research was to improve the performance of the predictive model itself, and there was a relatively lack of research to improve the overall customer churn prediction process. In fact, customers in the business have different behavior characteristics due to heterogeneous transaction patterns, and the resulting churn rate is different, so it is unreasonable to assume the entire customer as a single customer group. Therefore, it is desirable to segment customers according to customer classification criteria, such as loyalty, and to operate an appropriate churn prediction model individually, in order to carry out effective customer churn predictions in heterogeneous industries. Of course, in some studies, there are studies in which customers are subdivided using clustering techniques and applied a churn prediction model for individual customer groups. Although this process of predicting churn can produce better predictions than a single predict model for the entire customer population, there is still room for improvement in that clustering is a mechanical, exploratory grouping technique that calculates distances based on inputs and does not reflect the strategic intent of an entity such as loyalties. This study proposes a segment-based customer departure prediction process (CCP/2DL: Customer Churn Prediction based on Two-Dimensional Loyalty segmentation) based on two-dimensional customer loyalty, assuming that successful customer churn management can be better done through improvements in the overall process than through the performance of the model itself. CCP/2DL is a series of churn prediction processes that segment two-way, quantitative and qualitative loyalty-based customer, conduct secondary grouping of customer segments according to churn patterns, and then independently apply heterogeneous churn prediction models for each churn pattern group. Performance comparisons were performed with the most commonly applied the General churn prediction process and the Clustering-based churn prediction process to assess the relative excellence of the proposed churn prediction process. The General churn prediction process used in this study refers to the process of predicting a single group of customers simply intended to be predicted as a machine learning model, using the most commonly used churn predicting method. And the Clustering-based churn prediction process is a method of first using clustering techniques to segment customers and implement a churn prediction model for each individual group. In cooperation with a global NGO, the proposed CCP/2DL performance showed better performance than other methodologies for predicting churn. This churn prediction process is not only effective in predicting churn, but can also be a strategic basis for obtaining a variety of customer observations and carrying out other related performance marketing activities.

Introduction of region-based site functions into the traditional market environmental support funding policy development (재래시장 환경개선 지원정책 개발에서의 지역 장소적 기능 도입)

  • Jeong, Dae-Yong;Lee, Se-Ho
    • Proceedings of the Korean DIstribution Association Conference
    • /
    • 2005.05a
    • /
    • pp.383-405
    • /
    • 2005
  • The traditional market is foremost a regionally positioned place, wherein the market directly represents regional and cultural centered traits while it plays an important role in the circulation of facilities through reciprocal, informative and cultural exchanges while sewing to form local communities. The traditional market in Korea is one of representative retail businesses and premodern marketing techniques by family owned business of less than five members such as product management, purchase method, and marketing patterns etc. Since the 1990s, the appearance of new circulation-type businesses and large discount convenience stores escalated the loss of traditional competitiveness, increased the living standard of customers, changed purchasing patterns, and expanded the ubiquity of the Internet. All of these changes in external circulation circumstances have led the traditional markets to lose their place in the economy. The traditional market should revive on a regional site basis through the formation of a community of regional neighbors and through knowledge-sharing that leads to the creation of wealth. For the purpose of creating a wealth in a place, the following components are necessary: 1) a facility suitable for the spatial place of the present, 2)trust built through exchanges within the changing market environment, which would simultaneously satisfy customer's desires, 3) international bench marking on cases such as regionally centered TCM (England), BID (USA), and TMO (Japan) so that the market unit of store placement transfers from a spot policy to a line policy, 4)conversion of communicative conception through a surface policy approach centered around a macro-region perspective. The budget of the traditional market funding policy was operational between 2001 and 2004, serving as a counter move to solve the problem of the old traditional market through government intervention in regional economies to promote national economic strength. This national treasury funding project was centered on environmental improvement, research corps, and business modernization through the expenditure of 3,853 hundred million won (Korean currency). However, the effectiveness of this project has yet to be to proven through investigation. Furthermore, in promoting this funding support project, a lack of professionalism among merchants in the market led to constant limitations in comprehensive striving strategies, reduced capabilities in middle-and long-term plan setup, and created reductions in voluntary merchant agreement solutions. The traditional market should go beyond mere physical place and ordinary products creative site strategies employing the communicative approach must accompany these strategies to make the market a new regional and spatial living place. Thus, regarding recent paradigm changes and the introduction of region-based site functions into the traditional market, acquiring a conversion of direction into the newly developed project is essential to reinvestigate the traditional market composed of cultural and economic meanings, for the purpose of the research. Excavating social policy demands through the comparative analysis of domestic and international cases as well as innovative and expert management leadership development for NPO or NGO civil entrepreneurs through advanced case research on present promotion methods is extremely important. Discovering the seeds of the cultural contents industry cored around regional resource usages, commercializing regionally reknowned products, and constructing complex cultural living places for regional networks are especially important. In order to accelerate these solutions, a comprehensive and systemized approach research operated within a mentor academy system is required, as research will reveal distinctive traits of the traditional market in the aging society.

  • PDF

Different Perceptions, Knowledge, and Attitudes of Elementary, Middle, and High School Students regarding Irradiated Food, Nuclear Power Generation, and Medical Radiation (초, 중, 고등학생의 방사선조사식품, 원자력발전, 의료방사선에 대한 인식, 지식, 태도 차이)

  • Han, Eun Ok;Kim, Jae Rok;Choi, Yoon Seok
    • Journal of Radiation Protection and Research
    • /
    • v.39 no.2
    • /
    • pp.118-126
    • /
    • 2014
  • A survey was conducted on perceptions, knowledge, and attitudes of elementary, middle, and high school students, who will lead public opinion in the future, regarding irradiated food, nuclear power generation, and medical radiation. These topics urgently require general social acceptability among various fields in which radiation is used. Educational methods to enhance social acceptability were partially discovered. First, it is necessary to implement different strategies when designing courses for female and male students. Male students have higher levels of objective knowledge (p<0.039) of irradiated food, necessity (p<0.001) and objective knowledge (p<0.001) of nuclear power generation, approval of building a nuclear power plant in the nation (p<0.001), necessity (p<0.001) and objective knowledge (p<0.001) of medical radiation, and attitudes regarding using medical radiation (p<0.007, p<0.001). Second, the educational effect of explanations to help increase national understanding of the necessity and safety of nuclear power generation will increase if information on the necessity and safety of medical radiation is provided as well. Both male and female students perceived that medical radiation is the most necessary (p<0.001), medical radiation is the safest (p<0.001), and nuclear power generation is the least safe (p<0.013). Moreover, the correlation between medical radiation and nuclear power generation was the highest. Third, there is a need for different lectures between classes, since the patterns of perception vary according to the field of radiation use among elementary, middle, and high school students. Elementary school students had high interest in education on nuclear power generation (p<0.005), perceived that irradiated food is safe (p<0.001), and had the most positive attitude toward consuming irradiated food (p<0.001). Middle school students had high interest in education on nuclear power generation (p<0.018), perceived that nuclear power generation (p<0.001) and medical radiation (p<0.002) are safe, and had the most positive attitude toward using radiation for treatment (p<0.001). High school students had the highest level of objective knowledge on nuclear power generation (p<0.001) and medical radiation (p<0.001), and perceived that medical radiation is the most necessary (p<0.017); however, they perceived that nuclear power generation is the least safe (p<0.001). Attitudes toward irradiated food intake (p<0.001) and approving construction of a nuclear power plant in their neighborhood (p<0.001) were both low. Fourth, it is necessary to provide educational programs to change perceptions and improve attitudes rather than providing education focused on objective knowledge. There was no correlation between objective knowledge and necessity of irradiated food, objective knowledge and safety and interest in education on nuclear power generation, and objective knowledge and interest in education and information acquirement regarding medical radiation. In particular, high school students had the highest level of objective knowledge and yet had the least positive attitudes toward approving construction of nuclear power plants in their neighborhood and intake of irradiated food. Therefore, to increase the social acceptability of using nuclear energy and radiation in Korea, it is desirable to provide strategic educational programs to improve perceptions, knowledge, and attitudes regarding the necessity and safety of their use.

Analyzing the User Intention of Booth Recommender System in Smart Exhibition Environment (스마트 전시환경에서 부스 추천시스템의 사용자 의도에 관한 조사연구)

  • Choi, Jae Ho;Xiang, Jun-Yong;Moon, Hyun Sil;Choi, Il Young;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.18 no.3
    • /
    • pp.153-169
    • /
    • 2012
  • Exhibitions have played a key role of effective marketing activity which directly informs services and products to current and potential customers. Through participating in exhibitions, exhibitors have got the opportunity to make face-to-face contact so that they can secure the market share and improve their corporate images. According to this economic importance of exhibitions, show organizers try to adopt a new IT technology for improving their performance, and researchers have also studied services which can improve the satisfaction of visitors through analyzing visit patterns of visitors. Especially, as smart technologies make them monitor activities of visitors in real-time, they have considered booth recommender systems which infer preference of visitors and recommender proper service to them like on-line environment. However, while there are many studies which can improve their performance in the side of new technological development, they have not considered the choice factor of visitors for booth recommender systems. That is, studies for factors which can influence the development direction and effective diffusion of these systems are insufficient. Most of prior studies for the acceptance of new technologies and the continuous intention of use have adopted Technology Acceptance Model (TAM) and Extended Technology Acceptance Model (ETAM). Booth recommender systems may not be new technology because they are similar with commercial recommender systems such as book recommender systems, in the smart exhibition environment, they can be considered new technology. However, for considering the smart exhibition environment beyond TAM, measurements for the intention of reuse should focus on how booth recommender systems can provide correct information to visitors. In this study, through literature reviews, we draw factors which can influence the satisfaction and reuse intention of visitors for booth recommender systems, and design a model to forecast adaptation of visitors for booth recommendation in the exhibition environment. For these purposes, we conduct a survey for visitors who attended DMC Culture Open in November 2011 and experienced booth recommender systems using own smart phone, and examine hypothesis by regression analysis. As a result, factors which can influence the satisfaction of visitors for booth recommender systems are the effectiveness, perceived ease of use, argument quality, serendipity, and so on. Moreover, the satisfaction for booth recommender systems has a positive relationship with the development of reuse intention. For these results, we have some insights for booth recommender systems in the smart exhibition environment. First, this study gives shape to important factors which are considered when they establish strategies which induce visitors to consistently use booth recommender systems. Recently, although show organizers try to improve their performances using new IT technologies, their visitors have not felt the satisfaction from these efforts. At this point, this study can help them to provide services which can improve the satisfaction of visitors and make them last relationship with visitors. On the other hands, this study suggests that they managers along the using time of booth recommender systems. For example, in the early stage of the adoption, they should focus on the argument quality, perceived ease of use, and serendipity, so that improve the acceptance of booth recommender systems. After these stages, they should bridge the differences between expectation and perception for booth recommender systems, and lead continuous uses of visitors. However, this study has some limitations. We only use four factors which can influence the satisfaction of visitors. Therefore, we should development our model to consider important additional factors. And the exhibition in our experiments has small number of booths so that visitors may not need to booth recommender systems. In the future study, we will conduct experiments in the exhibition environment which has a larger scale.

Analysis of Trading Performance on Intelligent Trading System for Directional Trading (방향성매매를 위한 지능형 매매시스템의 투자성과분석)

  • Choi, Heung-Sik;Kim, Sun-Woong;Park, Sung-Cheol
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.3
    • /
    • pp.187-201
    • /
    • 2011
  • KOSPI200 index is the Korean stock price index consisting of actively traded 200 stocks in the Korean stock market. Its base value of 100 was set on January 3, 1990. The Korea Exchange (KRX) developed derivatives markets on the KOSPI200 index. KOSPI200 index futures market, introduced in 1996, has become one of the most actively traded indexes markets in the world. Traders can make profit by entering a long position on the KOSPI200 index futures contract if the KOSPI200 index will rise in the future. Likewise, they can make profit by entering a short position if the KOSPI200 index will decline in the future. Basically, KOSPI200 index futures trading is a short-term zero-sum game and therefore most futures traders are using technical indicators. Advanced traders make stable profits by using system trading technique, also known as algorithm trading. Algorithm trading uses computer programs for receiving real-time stock market data, analyzing stock price movements with various technical indicators and automatically entering trading orders such as timing, price or quantity of the order without any human intervention. Recent studies have shown the usefulness of artificial intelligent systems in forecasting stock prices or investment risk. KOSPI200 index data is numerical time-series data which is a sequence of data points measured at successive uniform time intervals such as minute, day, week or month. KOSPI200 index futures traders use technical analysis to find out some patterns on the time-series chart. Although there are many technical indicators, their results indicate the market states among bull, bear and flat. Most strategies based on technical analysis are divided into trend following strategy and non-trend following strategy. Both strategies decide the market states based on the patterns of the KOSPI200 index time-series data. This goes well with Markov model (MM). Everybody knows that the next price is upper or lower than the last price or similar to the last price, and knows that the next price is influenced by the last price. However, nobody knows the exact status of the next price whether it goes up or down or flat. So, hidden Markov model (HMM) is better fitted than MM. HMM is divided into discrete HMM (DHMM) and continuous HMM (CHMM). The only difference between DHMM and CHMM is in their representation of state probabilities. DHMM uses discrete probability density function and CHMM uses continuous probability density function such as Gaussian Mixture Model. KOSPI200 index values are real number and these follow a continuous probability density function, so CHMM is proper than DHMM for the KOSPI200 index. In this paper, we present an artificial intelligent trading system based on CHMM for the KOSPI200 index futures system traders. Traders have experienced on technical trading for the KOSPI200 index futures market ever since the introduction of the KOSPI200 index futures market. They have applied many strategies to make profit in trading the KOSPI200 index futures. Some strategies are based on technical indicators such as moving averages or stochastics, and others are based on candlestick patterns such as three outside up, three outside down, harami or doji star. We show a trading system of moving average cross strategy based on CHMM, and we compare it to a traditional algorithmic trading system. We set the parameter values of moving averages at common values used by market practitioners. Empirical results are presented to compare the simulation performance with the traditional algorithmic trading system using long-term daily KOSPI200 index data of more than 20 years. Our suggested trading system shows higher trading performance than naive system trading.

Issue tracking and voting rate prediction for 19th Korean president election candidates (댓글 분석을 통한 19대 한국 대선 후보 이슈 파악 및 득표율 예측)

  • Seo, Dae-Ho;Kim, Ji-Ho;Kim, Chang-Ki
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.199-219
    • /
    • 2018
  • With the everyday use of the Internet and the spread of various smart devices, users have been able to communicate in real time and the existing communication style has changed. Due to the change of the information subject by the Internet, data became more massive and caused the very large information called big data. These Big Data are seen as a new opportunity to understand social issues. In particular, text mining explores patterns using unstructured text data to find meaningful information. Since text data exists in various places such as newspaper, book, and web, the amount of data is very diverse and large, so it is suitable for understanding social reality. In recent years, there has been an increasing number of attempts to analyze texts from web such as SNS and blogs where the public can communicate freely. It is recognized as a useful method to grasp public opinion immediately so it can be used for political, social and cultural issue research. Text mining has received much attention in order to investigate the public's reputation for candidates, and to predict the voting rate instead of the polling. This is because many people question the credibility of the survey. Also, People tend to refuse or reveal their real intention when they are asked to respond to the poll. This study collected comments from the largest Internet portal site in Korea and conducted research on the 19th Korean presidential election in 2017. We collected 226,447 comments from April 29, 2017 to May 7, 2017, which includes the prohibition period of public opinion polls just prior to the presidential election day. We analyzed frequencies, associative emotional words, topic emotions, and candidate voting rates. By frequency analysis, we identified the words that are the most important issues per day. Particularly, according to the result of the presidential debate, it was seen that the candidate who became an issue was located at the top of the frequency analysis. By the analysis of associative emotional words, we were able to identify issues most relevant to each candidate. The topic emotion analysis was used to identify each candidate's topic and to express the emotions of the public on the topics. Finally, we estimated the voting rate by combining the volume of comments and sentiment score. By doing above, we explored the issues for each candidate and predicted the voting rate. The analysis showed that news comments is an effective tool for tracking the issue of presidential candidates and for predicting the voting rate. Particularly, this study showed issues per day and quantitative index for sentiment. Also it predicted voting rate for each candidate and precisely matched the ranking of the top five candidates. Each candidate will be able to objectively grasp public opinion and reflect it to the election strategy. Candidates can use positive issues more actively on election strategies, and try to correct negative issues. Particularly, candidates should be aware that they can get severe damage to their reputation if they face a moral problem. Voters can objectively look at issues and public opinion about each candidate and make more informed decisions when voting. If they refer to the results of this study before voting, they will be able to see the opinions of the public from the Big Data, and vote for a candidate with a more objective perspective. If the candidates have a campaign with reference to Big Data Analysis, the public will be more active on the web, recognizing that their wants are being reflected. The way of expressing their political views can be done in various web places. This can contribute to the act of political participation by the people.

Analysis of Influential Factors in the Relationship between Innovation Efforts Based on the Company's Environment and Company Performance: Focus on Small and Medium-sized ICT Companies (기업의 환경적 특성에 따른 혁신활동과 기업성과간 영향요인 분석: ICT분야 중소기업을 중심으로)

  • Kim, Eun-jung;Roh, Doo-hwan;Park, Ho-young
    • Journal of Technology Innovation
    • /
    • v.25 no.4
    • /
    • pp.107-143
    • /
    • 2017
  • This study aims to understand the impact of internal and external environments and innovation efforts on a company's performance. First, the relationships and patterns between variables were determined through an exploratory factor analysis. Afterwards, a cluster analysis was conducted, in which the influential factors summarized in the factor analysis were classified. Finally, structural equation modeling was used to carry out an empirical analysis of the structural relationship between innovation efforts and the company's performance in the classified clusters. 7 factors were derived from the exploratory factor analysis of 40 input variables from external and internal environments. 4 clusters (n=1,022) were formed based on the 7 factors. Empirical analysis of the 4 clusters using structural equation modelling showed the following: Only independent technology development had a positive impact on the company's performance for Cluster 1, which is characterized by sensitivity to a technological/competitive environment and innovativeness. Only independent technology development and joint research had positive impacts on the company's performance for Cluster 2, which is characterized by sensitivity to a market environment and internal orientation. Joint research and the mediating variable of government support program utilization had positive impacts, while the introduction of technology had a negative impact on the company's performance for Cluster 3, which is characterized by sensitivity to a competitive environment, innovativeness, and willingness to cooperate with the government and related institutions. Independent technology development as well as the mediating variables of network utilization and government support program utilization had positive impacts on the company's performance for Cluster 4, which is characterized by openness and external cooperation.

Information technology and changes in firm activities:A case of the service industry in the United States (정보기술과 기업활동의 변화:미국의 서비스산업을 사례로)

  • Lee, Jeong Rock
    • Journal of the Korean Geographical Society
    • /
    • v.29 no.4
    • /
    • pp.402-419
    • /
    • 1994
  • Telecommunication and intormation technology have been conceived as crucial as well as revolutionary elements for recent and future social and economic development, and their development have led to a spatial reorganization and locational change of economic activities. Information technology has resulted in important changes in the organization structure and location of firm. This study draws attention to the understanding of the relationship between the diffusion of information technology and changes in firm activities with the special reference to the service industry of the United States. Information technology has had a significant impact on the growth and changes of the service industry of the United States through changes in the organizational and employment structure, market structure, and locational changes. The impact of information technology on location changes of the service industry shows two opposite patterns, concentration and decentralization. Among these patterns, the location change in the service industry of the United States reveals predominantly the decentralization tendency such as suburbanization and transfer to lower ranking cities rather than concentration. In case of Korea, however, it is anticipated that the rapid development of information technology may lead to the concentration of the service industry in Seoul and Capital region.

  • PDF

An Analysis of Elementary School Students' Interpretation of Data Characteristics by Cognitive Style (초등학생의 인지양식에 따른 자료해석 특성 분석)

  • Lim, Sung-Man;Son, Hee-Jung;Yang, Il-Ho
    • Journal of The Korean Association For Science Education
    • /
    • v.31 no.1
    • /
    • pp.78-98
    • /
    • 2011
  • The purpose of this study was to analyze elementary school students' interpretation of data characteristics by cognitive style. Participants were elementary students in sixth grade who can use integrated inquiry process skills. The students were divided into two groups, analytic cognitive style and wholistic cognitive style according to their response to Cognitive Style Analysis. They performed scientific interpretation of data activity. To collect data for this study, participants recorded the result on scientific interpretation of data activity paper and researcher recorded the situation on videotape and interviewed with participants after the end of interpretation of data to get additional data. And the findings of this study were as follows: First, the study analyzed interpretation of data characteristics by the operator regarding different situations of interpreting data according to cognitive style. For example, in the intermediate state, analytic-cognitive style students showed high achievement in identifying variables, and wholistic-cognitive style students were active in using prior knowledge to interpret data. Second, the result of analysis on the direction of interpreting data and preference for data types in interpreting data activities according to cognitive style are as follows: Wholistic-cognitive style students showed relatively high perception of information through the top-down approach. On the other hand, analytic-cognitive style students usually used the bottom-up approach gradually expanding detailed information to the scientific question-related answer and showed a preference data of the table type. Through the result, this study aimed to help establish a data interpretation strategy for learners to solve problems based on understanding of interpretation of data characteristics according to learners' cognitive style, and purposed the instruction design suggesting the data requiring various data interpretation strategies to develop learners' data interpretation ability.