• Title/Summary/Keyword: 전도하중

Search Result 111, Processing Time 0.022 seconds

Electrothermal Crack Analysis in a Finite Conductive Layer with Temperature-dependent Material Properties (온도 의존성 물성치를 가지는 유한한 전도층에서의 전기/열하중을 받는 균열의 해석)

  • Jang Yong-Hoon;Lee Sang-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.949-956
    • /
    • 2006
  • The method of Greenwood and Williamson is extended to obtain a solution to the coupled non-linear problem of steady-state electrical and thermal conduction across a crack in a conductive layer, for which the electrical resistivity and thermal conductivity are functions of temperature. The problem can be decomposed into the solution of a pair of non-linear algebraic equations involving boundary values and material properties. The new mixed-boundary value problem given from the thermal and electrical boundary conditions for the crack in the conductive layer is reduced in order to solve a singular integral equation of the first kind, the solution of which can be expressed in terms of the product of a series of the Chebyshev polynomials and their weight function. The non-existence of the solution for an infinite conductor in electrical and thermal conduction is shown. Numerical results are given showing the temperature field around the crack.

The Comparison of the Stability of a Container Crane according to various Wind Load Design Codes (풍하중 설계 기준에 따른 컨테이너 크레인의 안정성 비교)

  • Lee Seong-Wook;Shim Jae-Joon;Han Dong-Seop;Han Geun-Jo;Kim Tae-Hyung
    • Journal of Navigation and Port Research
    • /
    • v.29 no.6 s.102
    • /
    • pp.561-566
    • /
    • 2005
  • This study was carried out to amlyze and compare the stability of a 50ton container crane according to various wind load design codes. The wind load was evaluated according to 'The Specification of Port Facilities and Equipments / Specification for the design of crane structures (KS A 1627)' and 'Load Criteria of Building Structures' effected by the ministry of construction & transportation And the uplift forces qf a container crane under this wind load were estimated by amlyzing reaction forces at each supporting point and compared each other. From this study, we noticed that the design wind velocity criteria need to be defined specifically when the wind load is evaluated to design a container crane. And we verified the necessity of the estimation of the uplift forces at each supporting point to analyze a structural stability of a container crane and the maximum compressive force in order to consider the stability of the ground foundation of the berth.

Investigation of Lateral Resistance of Short Pile by Large-Scale Load Tests (실물 재하시험을 통한 짧은말뚝의 횡방향 저항거동 평가)

  • Lee, Su-Hyung;Choi, Yeong-Tae;Lee, Il-Wha;Yoo, Min-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.8
    • /
    • pp.5-16
    • /
    • 2017
  • When a lateral load is applied to a short pile whose embedded depth is relatively smaller than its diameter, an overturning failure occurs. To investigate the behavior of laterally loaded short piles, several model tests in laboratory scales had been carried out, however the behavior of large moment carrying piles for electric poles, traffic sign and road lamp, etc. have not been revealed yet. This paper deals with the real-scale load tests for 750 mm diameter short piles. To simulate the actual loading condition, very large moment was mobilized by applying lateral loads to the location 8 m away from the pile head. Three load tests changing the pile embedded lengths to 2.0 m, 2.5 m, and 3.0 m were carried out. The test piles overturned abruptly with very small displacement and rotation before the failures. These brittle failures are in contrast with the ductile failures shown in the former model tests with the relatively smaller moment to lateral load ratio. Comparisons of the test results with three existing methods for the estimation of the ultimate lateral capacity show that the method assuming the rotation point at pile tip matches well when the embedded depth is small, however, as the embedded depth increases the other two methods assuming the inversion of soil pressure with respect to rotation points in pile length match better.

Static, Dynamic and Buckling Analyses of a Power Transmission Tower under Wind Load (풍하중을 받는 송전철탑의 정적, 동적 및 좌굴해석)

  • Jung, Hyung-Jo;Shin, Dong-Seung;Moon, Byoung-Wook;Park, Ji-Hun;Lee, Sung-Kyung;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.369-374
    • /
    • 2006
  • This paper describes dynamic characteristics of a power transmission tower consisting of lots of power lines and insulators. A numerical 3D modeling for the static, dynamic and buckling analyses of the power transmission tower is presented considering the case when the power lines are cut. Eigenvalue analysis indicates that the transmission tower shows different behavior comparing to usual structures governed by several low modes. The transmission tower is governed by lots of modes. It is verified that the transmission tower is structurally safe against the static wind and buckling loads. But the structural and buckling safety is not guaranteed when all power lines are cut, which comes to collapse the transmission tower. Further study is in need to overcome such case. Wind dynamic analysis shows that fluctuating wind loads increase the response of the tower.

The Effect of Wind Load on the Stability of a Container Crane (풍하중이 컨테이너 크레인의 안정성에 미치는 영향 분석)

  • Lee Seong Wook;Shim Jae Joon;Han Dong Seop;Park Jong Seo;Han Geun Jo;Lee Kwon Soon;Kim Tae Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.2
    • /
    • pp.148-155
    • /
    • 2005
  • This study was carried out to analyze the effect of direction of wind load and machinery house location on the stability of container crane loading/unloading a container on a vessel. The overturning moment of container crane under wind load at 50m/s velocity was estimated by analyzing reaction forces at each supporting point. And variations of reaction forces at each supporting point of a container crane were analyzed according to direction of wind load and machinery house location. The critical location of machinery house was also investigated to install a tie-down which has an anti-overturning function of container crane at the land side supporting point.

풍향에 따른 컨테이너 크레인의 안정성에 관한 연구

  • 김천일;한근조;심재준;한동섭;이성욱;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.73-73
    • /
    • 2004
  • 현대 산업기술발달과 구조변화는 각 국에서 생산되는 제품과 원자재 등의 상호교역을 더욱 활발하게 하였다. 이러한 수요 증대에 부응하기 위하여 각 국에서는 물자의 원활한 운송과 처리를 위한 연구가 계속 이루어지고 있는 실정이며, 최근에는 규격화된 컨테이너를 이용하여 한 번에 많은 양의 물류를 여러 국가로 운반할 수 있는 초대형 컨테이너선과 이를 항만에서 양ㆍ적하 하기 위한 컨테이너 크레인과 같은 항만하역장비에 관한 연구가 활발하게 진행되고 있다.(중략)

  • PDF

기계실 위치 변화가 컨테이너 크레인의 안정성에 미치는 영향 분석

  • 이성욱;한근조;심재준;한동섭;김천일;김태형
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.102-102
    • /
    • 2004
  • 산업과 경제의 발달로 그 수요가 급속도로 증대되고 있는 항만물류를 처리하기 위한 여러 가지 항만하역장비에서 가장 핵심은 컨테이너를 선박에 양ㆍ적하하는 장비인 컨테이너 크레인이라 할 수 있다. 최근에는 이러한 컨테이너 크레인도 초대형 컨테이너선의 출현으로 인하여 이에 맞는 구조나 작동 방식을 보유할 수 있도록 연구가 활발히 진행되고 있다.(중략)

  • PDF

Design and Fabrication of Semi-cylindrical Radar Absorbing Structure using Fiber-reinforced Composites (섬유강화 복합재료를 이용한 반원통형 전자파 흡수구조의 설계 및 제작)

  • Jang, Hong-Kyu;Shin, Jae-Hwan;Kim, Chun-Gon;Shin, Sang-Hun;Kim, Jin-Bong
    • Composites Research
    • /
    • v.23 no.2
    • /
    • pp.17-23
    • /
    • 2010
  • The stealth technology can increase the survivability of aircrafts or warships and enhance the capability of mission completion in hostile territory. The purpose of this paper is to present the low observable structure with curved surfaces made by fiber-reinforced composites and to show the possibility of developing omnidirectional stealth platforms for military applications. In this study, we developed a radar absorbing structures(RAS) based on a circuit analog absorber to reduce the radar cross section(RCS) of an object with curved surfaces. Firstly, the RAS with a periodic square patterned conducting polymer layer was designed and simulated using a commercial 3-D electromagnetic field analysis program. Secondly, the designed semi-cylindrical structure with low RCS was fabricated using fiber-reinforced composites and conducting polymer. To make the periodic pattern layer, acts as resistive sheet, the intrinsic conducting polymer paste containing PEDOT with a polyurethane binder was used. Finally, the radar cross section was measured to evaluate the radar absorbing performances of the fabricated RAS by the compact range facility in POSTECH.

Calculation of Securing and Lashing Loads of Containers on the Deck of a Ship in Waves (I) (파랑중 선박의 운동을 고려한 갑판적 컨테이너의 Securing 및 Lashing 하중 계산 (I))

  • Yoon Hyeon-Kyu;Lee Gyeong-Joong;Yang Young-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.29 no.5 s.101
    • /
    • pp.377-382
    • /
    • 2005
  • A ship runs with various modes of motion due to waves. Among the modes, roll mainly influences on the safety of cargos on the deck of container ship. In order to protect cargo shifting and turning, securing and lashing system are generally installed. In that case, it is necessary that the force and moment at the connection point of containers should be estimated. Therefore we derived mathematical equations to calculate the forces of securing points and lashing wires. Also we calculated those forces and moments about various lashing patterns.

Effect of Loading Rate on Self-stress Sensing Capacity of the Smart UHPC (하중 속도가 Smart UHPC의 자가 응력 감지 성능에 미치는 영향)

  • Lee, Seon Yeol;Kim, Min Kyoung;Kim, Dong Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.81-88
    • /
    • 2021
  • Structural health monitoring (SHM) systems have attracted considerable interest owing to the frequent earthquakes over the last decade. Smart concrete is a technology that can analyze the state of structures based on their electro-mechanical behavior. On the other hand, most research on the self-sensing response of smart concrete generally investigated the electro-mechanical behavior of smart concrete under a static loading rate, even though the loading rate under an earthquake would be much faster than the static rate. Thus, this study evaluated the electro-mechanical behavior of smart ultra-high-performance concrete (S-UHPC) at three different loading rates (1, 4, and 8 mm/min) using a Universal Testing Machine (UTM). The stress-sensitive coefficient (SC) at the maximum compressive strength of S-UHPC was -0.140 %/MPa based on a loading rate of 1 mm/min but decreased by 42.8% and 72.7% as the loading rate was increased to 4 and 8 mm/min, respectively. Although the sensing capability of S-UHPC decreased with increased load speed due to the reduced deformation of conductive materials and increased microcrack, it was available for SHM systems for earthquake detection in structures.