• Title/Summary/Keyword: 전단 처짐

Search Result 85, Processing Time 0.025 seconds

FE Based Numerical Model to Consider Bond-slip Effect in Composite Beams (합성보의 부착슬립 효과를 고려한 유한요소 기반의 수치해석모델)

  • Kwak, Hyo-Gyoung;Hwang, Jin-Wook
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.95-110
    • /
    • 2010
  • A numerical model to simulate bond-slip behavior of composite beam bridges is introduced in this paper. Assuming a linear bond stress-slip relation along the interface between the slab and girder, the slip behavior is implemented into a finite element formulation. Adopting the introduced model, the slip behavior can be taken account even in a beam element which is composed of both end nodes only. Governing equation of the slip behavior, based on the linear partial interaction theory, can be determined from the force equilibrium and a constant curvature distribution across the section of a composite beam. Since the governing equation for the slip behavior requires the moment values at both end nodes, the piecewise linear distribution of the constant bending moment in an element is assumed. Analysis results by the model are compared with numerical results and experimental values, and load-displacement relations of composite beams were then evaluated to verify the validity of the proposed model.

Layered Section Analysis for PSC Girder with Variable Cross Section Using SI Technique (SI기법을 이용한 변단면 PSC 거더의 층상화 단면해석)

  • Kim, Byeong Hwa;Park, Taehyo;Jeon, Hye-Kwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.581-590
    • /
    • 2010
  • This study introduces a layered sectional analysis for a PSC girder with a vaiable cross section and curved tendons. To consider the shear equilibrium at a concrete layer with curved tendons, the shear stress distribution has been computed at each section. In addition, to improve the convergence to the solution, a system identification technique is newly adopted in the solution process for strain computation. To examine the feasibility of the proposed approach, a static load test has been conducted for a full scale PSC girder with variable cross section. The prediction shows a good agreement with experiment. It is seen that a uniform cross section has the same moment capacity with a variable cross section while the variable cross section has more shear capacity than the uniform cross section. It is also noted that the maximum displacement of a variable cross section is a little smaller than a uniform cross section.

Characteristics of Shear Behavior of Reinforced Concrete Beams Strengthened with Near Surface Mounted CFRP Strips (CFRP 스트립 표면매립공법으로 보강된 철근콘크리트 보의 전단거동 특성)

  • Han, Sang Hoon;Hong, Ki Nam;Shin, Byoung Gil;Lim, Jin Mook;Kwak, So Shin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.5
    • /
    • pp.178-189
    • /
    • 2011
  • Tests and analyses were performed in this study to assess the shear strength of Reinforced Concrete(RC) members strengthened by the Near Surface Mounted(NSM) technique in shear, which is drawing attention as an alternative to the Carbon Fiber Reinforced Polymer(CFRP) bonding strengthening technique. Four-point bending tests were performed on 7 RC specimens without any shear reinforcement. The test variables such as the inclination of CFRP strip (45 degrees and 90 degrees), and the spacing of CFRP strip (250mm, 200mm, 150mm, 100mm) were considered. Through the testing scenarios, the effect of each test variable on the failure mode and the shear strength of the RC members strengthened by the NSM technique in shear were assessed. The test results show that the specimens with CFRP strips at 45 degrees go to failure as a result of the strip fracture, but the specimens with CFRP strips at 90 degrees go to failure as a result of the slip of strips. Strips at 45 degrees was the more effective than strips at 90 degrees, not only in terms of increasing beam shear resistance but also in assuring larger deformation capacity at beam failure. In addition, the RBSN analysis appropriately predicted the crack formation and the load-displacement response of the RC members strengthened by the NSM technique in shear.

Behavioral Characteristics of Precast Concrete Slab using Wheel Load Tester (윤하중 시험 차량을 활용한 프리캐스트 콘크리트 바닥판의 거동 특성)

  • Park, Seok-Soon;Kim, Nak-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.29-34
    • /
    • 2010
  • The main objective of this research is to present the behaviors of precast concrete slab under moving wheel loads. The simulated moving wheel tester and precast concrete slab were designed for this research. In particular, a comparative analysis between the structural analysis and the moving wheel load test was evaluated in connection parts, deformation, bedding layer of concrete slab panels. In the comparisons of the test results from static and moving wheel loads, the maximum deformations were similar. It should be noted that the deformation of panel 2 from the static loading test was larger than that of other panels, while the deformations of panels 1 and 3 were more noticeable than that of panel 2.

A Study on Shear-Fatigue Behavior of New Polymer Reinforced Concrete Beams (신(新)폴리머 철근(鐵筋)콘크리트보의 전단피로(剪斷疲勞) 거동(擧動)에 관(關)한 연구(研究))

  • Kwak, Kae Hwan;Park, Jong Gun;Jang, Ki Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.3
    • /
    • pp.35-44
    • /
    • 1993
  • The objective of this study is aimed at developing a new class of polymer concrete, in which hydration of cement and curing of a thermosetting resin can take place simultaneously during the mixing of concrete components. For the selected mix-proportion of the new polymer, the physical and mechanical properties needed for designs are presented. These important properties are compressive strength, flexural strength, split tensile strength, direct strength, fatigue characteristics and fracture parameters. The observed properties are always compared with conventional concrete to serve as reference for engineer in deciding or selecting the proper materials for their projects, and shore protecting structure.

  • PDF

A Study on Shear-Fatigue Behavior of Reinforced Concrete Beams (철근(鐵筋)콘크리트보의 전단피로거동(剪斷疲勞擧動)에 관(關)한 연구(硏究))

  • Chang, Dong Il;Kwak, Kae Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.173-185
    • /
    • 1988
  • This study is intended to investigate the shear fatigue behaviour of reinforced concrete beams based on a series of experiments, and verify the test results in comparison with the analysis result obtained by using a nonlinear finite element method. The experiments are divided into the tests under the static loading and the test under the dynamic fatigue loading. In order to investigate the shear failure behaviour under static loadings, four specimens for three different cases were made and tested. The behaviour of stirrups with the static stress and strain variations were observed based on the results of these tests. In the fatigue fracture tests, eleven specimens for four different cases were made and tested. Various observations on mid-span deflection of test beams and tensile strains of reinforcing steels as well as stirrups were made against various fatigue loadings. It may be concluded that the shear fatigue strengths of R.C. specimens at one million cycles turn out to be approximately 65 percent of the static ultimate shear strength.

  • PDF

Prediction of Failure Mode Under Static Loading in Long Span Bridge Deck Slabs by FEM (유한요소해석에 의한 장지간 바닥판의 정적파괴형태 예측)

  • Park, Woo Jin;Hwang, Hoon Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.4
    • /
    • pp.52-59
    • /
    • 2012
  • An analytical model is presented to predict the static behavior of the long-span prestressed concrete bridge deck(the long-span PSC deck). The finite element analysis is performed and the results are compared with that of the previous experimental test. The load-deflection relationship curves by FEM are in good agreement with the results reported in the previous study. The failure mode of all test specimens is predicted by the punching shear in this study. It is also observed in the previous experimental test. The main objective of this paper is presenting supportive method to predict static behavior of the long-span PSC deck slab. It is not simulating the punching shear behavior graphically.

A Study for Structural Behavior of R./C beams Strengthened with New Bonding Methods (보강재의 변형 부착에 따른 보의 구조적 거동)

  • 한만엽;송병표
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.3
    • /
    • pp.197-208
    • /
    • 1998
  • 최근들어 손상된 실구조물의 보강공법들이 적용,발전되어왔다. 가장 보편적으로 사용된공법이 강판과 탄소섬유를 이용한 공법이지만, 이론적인 배경과 적용기술이 아직은 정립되어었지 않은 상태이다. 강판보강의 경우 단부에서의 응력집중이 보강 효과를 결정짓는 가장 중요한 변수이므로, 본 연구에서는 이러한 응력집중을 완화하기 위하여 단부에 보강판과확대판을 부착하여 실험을 하였고, 탄소섬유 보강 실험에서는 다층 시공시 보강량을 조절하여 실험하였다. 실험 결과는 하중-처짐, 항복하중, 최대하중, 보강재의 전단응력의 분포와 보강재의 파괴양상을 분류하여 정리하였다. 실험을 통하여 강판 보강의 경우 본 연구에서 제안된 단부에서의 보강방법이 보강효과가 향상된 것을 확인하였고 탄소섬유 보강시에는 탄소섬유의 보강량을 조절함으로써 경제적인 설계와 시공이 가능한 것으로 나타났다.

A Boundary Integral Approximation for Bending of Elastic Plates (탄성평판 굽힘문제를 위한 경계적분 근사해)

  • Kim, Jin Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.57-66
    • /
    • 2002
  • 본 연구는 굽힘 하중하에서 탄성평판 구조 해석을 위한 경계적분방법 구성을 주목적으로 하고 체계적인 모듈화시스템 개발의 첫 이론 부분을 확립하였다. 굽힘 문제에서의 4개의 고유변수인 처짐, 기울기, 굽힘모우멘트, 상당 전단력의 항으로 경계적분방정식을 구성하였다. 물리적인 의미를 갖는 두 새로운 핵함수 도입으로 구성된 이들 적분방정식은 경계요소 구성시 나타나는 특이거동의 문제점을 간단한 두 탄성해에 의해 정규화 시켰으며 수치 적분 과정도 Cauchy 주치 적분 수렴성에서의 특별취급과는 달리 효율적으로 일반화시켰다. 경계적분식의 수치해석방법을 서술하였으며 집중하중하의 비대칭문제의 근사수치해를 도시하였다.

Stress Analysis of Cold-Formed Steel Beams Considering Local Buckling Effects (국부좌굴을 고려한 냉간성형 ㄷ 형강보의 응력해석)

  • Jeon, Jae Man;Hyun, Ja Young;Lee, Jae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.51-60
    • /
    • 2004
  • The stress analysis of cold-formed channel section steel beams under transverse load was conducted. The local buckling effect was included in the analysis using effective area concept. The proposed analytical model is capable of predicting accurate normal stress in the beam due to various behaviors including biaxial bending and warping. It was found to be appropriate for predicting stresses as well as deflection in the beam. A finite element model was developed to solve the analytical model.