• Title/Summary/Keyword: 전단 유동

Search Result 560, Processing Time 0.026 seconds

Flow Changes by Stent Insertion in Fusiform Aneurysm Models (스텐트 삽입에 의한 방추형 동맥류 내부 유동의 변화)

  • 이계한;서남현
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.6
    • /
    • pp.535-542
    • /
    • 2001
  • Endovascular embolization technique using a steno is currently used to treat the wide neck aneurysm. Since intraaneurysmal flow characteristics affect thrombus formation and embolisation process. flow visualization technique incorporating photochromic dye was used to elucidate hemodynamic changes by stenting Inside the fusiform aneurysm models. Qualitative observation of flow field and measurement of wall shear rates were Performed at five aneurysm wall locations under pulsatile flow. Intraaneurysmal flow motion was reduced and sluggish vortical motion was maintained during late deceleration phase by stenting. Also wall shear rates were reduced and OSI's were increased in the stented model. These flow characteristics Provide hemodynamic environment favorable for thrombus formation and intimal hyperplasia. The results of this study show hemodynamic changes by stenting Promote thrombus formation and aneurysm embolisation.

  • PDF

Rheological Characteristics of ER Fluids at High Pressure-Driven Flow Mode (높은 압력차의 유동모드 하에서 ER유체의 유변특성)

  • 이호근;최승복;정재천;강윤수;서문석
    • The Korean Journal of Rheology
    • /
    • v.11 no.1
    • /
    • pp.1-8
    • /
    • 1999
  • This paper experimentally investigates the steady shear behaviors of electro-rheological(ER) fluids under flow mode at high pressure level. As for the ER fluid to be tested, two types of ER fluids are employed; water-based ER fluids (ERF 1, ERF 2) and water-free ER fluid(ERF 3). The water-based ER fluids are composed inhousingly, and the concentrations of dispersed particles are 20 wt% and 30 wt% for ERF 1 and ERF 2, respectively. To generate the flow mode at high pressure, an experimental apparatus operated by two-way hydraulic cylinder is constructed and utilized. The pressure difference is measured by the pressure sensor, while the flow rate is calculated using the measured data of the displacement sensor(LVDT). Consequently, the shear stress and shear rate are distilled by incorporating the measured data; the pressure difference and the flow rate.

  • PDF

Experimental study on Magnetic Flow Characteristics of MR Fluid (MR 유체의 자기유동 특성에 대한 실험연구)

  • Lee, Seok-Hyun;Kim, Ki-Young;Baek, Dae-Sung;Kwon, Young-Chul;Park, Sam-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.3611-3616
    • /
    • 2013
  • Physical characteristics of a magneto-rheological(MR) fluid can be influenced by a magnetic field. In the present study, the behaviors of MR fluid are visualized and the shear stresses are measured under the magnetic field for density 1.3, 1.5 and 1.7 $g/cm^3$, and viscosity 100, 1000 and 10000cp. When the magnetic field is applied, particles of MR fluid are arranged along lines of magnetic field. It is observed that the flow pattern of MR fluid under the magnetic field is different from that of MR fluid without the magnetic field. Shear stress of MR fluids under the magnetic field changes significantly. Shear stress by the magnetic field increases the shape of a quadratic equation. When the density changes from $1300kg/m^3$ to $1700kg/m^3$ at 2.0A, the shear stress increases about 33%.

Study on NOx Reduction with Multi-Perforated Tube Geometry in Integrated Urea-SCR Muffler (촉매삽입형 Urea-SCR 머플러 다공튜브 형상변화에 따른 NOx 저감 특성에 관한 연구)

  • Moon, Namsoo;Lee, Sangkyoo;Ko, Sangchul;Lee, Jeekeun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.1017-1026
    • /
    • 2014
  • A multi-perforated tube is generally installed between the muffler inlet and in front of selective catalytic reduction (SCR) catalysts in the integrated urea-SCR muffler system in order to disperse the urea-water solution spray uniformly and to make better use of the SCR catalyst, which would result in an increase nitrogen oxide ($NO_x$) reduction efficiency and a decrease in the ammonia slip. The effects of the multi-perforated tube orifice area ratios on the internal flow characteristics were investigated analytically by using a general-purpose commercial software package. From the results, it was clarified that the multi-perforated tube geometry sensitively affected the generation of the bulk swirling motion inside the plenum chamber set in front of the SCR catalyst and to the uniformity index of the velocity distribution produced at the inlet of the catalyst. To verify the analytical results, engine tests were carried out in the ESC and ETC modes. Results of these tests indicated that the larger flow model in the longitudinal direction showed the highest NOx reduction efficiency, which was a good agreement with the analytical results.

The Influence of the Velocity Ratio on the Vortex Pairing Process in Mixing Layer (혼합층에서 와류병합과정에 대한 속도비의 영향)

  • 서태원;금기현
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.279-286
    • /
    • 1999
  • Wall-bounded 유동과 달리 자유 전단 유동은 Hyperbolic Tangent Profile을 가지고 비점성 불안정에 의해 지배된다. 따라서 자유 전단 유동에서 난류로의 천이과정은 비점성 불안정성 이론에 의해 해석되어 진다. 본 연구는 분리판(Splitter plate)에 의해 분리된 속도가 다른 자유 유속의 혼합에 의해 형성되는 혼합층에서 와류병합과정에 대한 속도비의 영향에 대하여 연구한다. 속도비는, R, $ \frac{U_1-U_2}{U_1+U_2}$ 로 정의되며, 여기서 $U_1$은 분리판 위에서의 자유 유속을 그리고 $U_2$ 는 분리판 아래에서의 자유 유속을 나타낸다. 본 연구에서 와류구조의 병합작용을 분석하기 위하여 2차원 비정상 Large-Eddy Simulation 방법을 적용하였다. 속도비의 변화에 따라 혼합층에서 불안정 Wave가 성장하게 되고, 유체는 2차원 와류구조에서 Roll-up한다. 이러한 2차원 와류구조는 주위의 다른 와류구조와 상호작용을 하게 되고 하나의 커다란 와류구조를 형성하는 것을 볼 수 있다. 혼합층에서 와류병합과정은 반복적으로 일어나는 것을 알 수 있었고, 이 결과를 이용하여 혼합층의 성장을 제어할 수 있다.

  • PDF

LES for Turbulent Duct Flow with Surface Mass Injection (질량분사가 있는 덕트 난류유동의 LES 해석)

  • Kim, Bo-Hoon;Na, Yang;Lee, Chang-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.3
    • /
    • pp.232-241
    • /
    • 2011
  • The hybrid rocket shows interesting characteristics of complicated mixing layer developed by the interaction between turbulent oxidizer flow and injected surface mass flow from fuel vaporization. In this study, the compressible LES was conducted to explore the physical phenomena of surface oscillatory flow induced by the flow interferences in a duct domain. From the numerical results, the wall injection generates the stronger streamwise vorticites and the negative components of axial velocity accompanied with the azimuthal vorticity near the surface. And the vortex shedding with a certain time scale was found to be developed by hydrodynamic instability in the mixing layer. The pressure fluctuations in this calculation exhibit a peculiar peak at a specific angular frequency($\omega$=8.8) representing intrinsic oscillation due to the injection.

Application of various flow visualization techniques on complicated three-dimensional flows (3차원 유동내에서 다양한 유동가시화 기술의 응용)

  • 정진택
    • Journal of the KSME
    • /
    • v.33 no.9
    • /
    • pp.803-810
    • /
    • 1993
  • 벽면에서의 전단응력 분포와 유동장 내에서의 3차원 유동 요소를 추적하는 유동가시화 기법중 에서 몇 가지를 그 응용 예와 함께 살펴보았다. 3차원 유동의 주요 특징들과 한계유선(limiting streamlines)을 관찰하기 위해서는 oil and lampblack 기법이 충분하나 유속이 작거나 유동의 방향이 분명하지 않은 곳에서는 ink dot 기법을 적용하는 것이 좋다. Oil and lampblack 기법은 실험하고자 하는 유동의 조건에 따라 기름과 분말의 혼합비, 기름의 점도 등을 잘 선택하여야 한다. 안장점(Saddle point) 이나 재부착선(reattachment line)과 같이 성격상 중요한지점을 찾기 위해서는 털실 프로브(single tuft probe)가 유용하게 쓰이며, 이는 또 유동내에서 와동의 존재와 위치를 찾는데 쓰이기도 한다. 수치해석 결과 얻을 수 잇는 속도벡터와 같이 비교적 넓은 유동 장을 한눈에 관찰하기 위해서는 털실 격자망 (tuft grid)을 사용할 수 있으며 각 털실은 그 지 점세서의 유동의 방향과 그 안정성(steadiness)를 나타내준다. 이러한 유동가시화 방법들은 각 유동의 특성에 맞는 적절한 조건을 맞추기 위해서 많은 시행착오를 거쳐야 하며, 하나의 만족 스러운 결과를 얻기 위해서는 많은 기술과 시간과 연습을 요구하고 있어서 다른 정량적인 측정 기술과 더불어 커다란 노력과 관심을 기울여서 발전시켜야만 할 것이다.

  • PDF

Steady Shear Flow and Dynamic Viscoelastic Properties of Semi-Solid Food Materials (반고형 식품류의 정상유동특성 및 동적 점탄성)

  • 송기원;장갑식
    • The Korean Journal of Rheology
    • /
    • v.11 no.2
    • /
    • pp.143-152
    • /
    • 1999
  • Using a Rheometrics Fluids Spectrometer(RFS II), the steady shear flow and the small-amplitude dynamic viscoelastic properties of three kinds of semi-solid food materials(mayonnaise, tomato ketchup, and wasabi) have been measured over a wide range of shear rates and angular frequencies. The shear rate dependence of steady flow behavior and the angular frequency dependence of dynamic viscoelastic behavior were reported from the experimentally measured data. In addition, some viscoplastic flow models with a yield stress term were employed to make a quantitative evaluation of the steady flow behavior, and the applicability of these models was also examined in detail. Furthermore, the correlations between steady shear flow(nonlinear behavior) and dynamic viscoelastic(linear behavior)properties were discussed using the modified power-law flow equations. Main results obtained from this study can be summarized as follows : (1) Semi-solid food materials are regarded as viscoplastic fluids having a finite magnitude of yield stress, and their flow behavior shows shear-thinning characteristics, exhibiting a decrease in steady flow viscosity with increasing shear rate. (2) The Herschel-Bulkley, Mizrahi-Berk, and Heinz-Casson models are all applicable to describe the steady flow behavior of semi-solid food materials. Among these models, the Heinz-Casson model has the best validity. (3) Semi-solid food materials show a stronger shear-thinning behavior at shear rate region higher than a critical shear rate where a more progressive structure breakdown takes place. (4) Both the storage and loss moduli are increased with increasing angular frequency, but they have a slight dependence on angular frequency. The elastic behavior is dominant to the viscous behavior over a wide range of angular frequencies. (5) All of the steady flow, dynamic, and complex viscosities are well satisfied with the power-law model behavior. The relationships between steady shear flow and dynamic viscoelastic properties can well be described by the modified forms of the power-law flow equations.

  • PDF

Interfacial shear stresses and friction factors in nearly-horizontal countercurrent stratified two-phase flow (근사수평 반류성층 2상유동에서의 계면전단응력 및 마찰계수)

  • 이상천;이원석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.1
    • /
    • pp.116-122
    • /
    • 1988
  • Interfacial shear stresses have been determined for countercurrent stratified flow of air and water in a nearly-horizontal rectangular channel, based upon measurements of pressure drop, gas velocity profiles and mean film thickness. A dimensionless correlation for the interfacial friction factor has been developed as a function of the gas and liquid Reynolds numbers. Equivalent surface roughnesses for the interfacial friction factor have been calculated using the Nikuradse correlation and have been compared with the intensity of the wave height fluctuation on the interface. The results show that the interfacial shear stress is mainly affected by turbulent mixing near the interface due to the wave motion rather than by the roughened surface.

Rheological, Characterization of Aqueous Poly(Ethylene Oxide) Solutions - Creep and Creep Recovery - (폴리에틸렌옥사이드 수용액의 유변학적 특성 평가 - 크리프 및 크리프 회복 -)

  • 장갑식;김태훈;박영훈;송기원
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.175-178
    • /
    • 2001
  • 일반적으로 점탄성 거동을 나타내는 고분자 액체의 전단유동특성(shear flow properties)을 평가하기 위하여 정상전단(steady shear), 동적전단(dynamic shear), 응력완화(stress relaxation) 그리고 크리프(creep) 및 크리프 회복(creep recovery) 실험 등이 활용되고 있다[1], 이때 영전단점도(zero shear viscosity)와 정상상태 회복 컴플라이언스(steady-state recoverable compliance)는 정상상태(steady state)에서 얻어지는 물리량으로, 각 실험방법으로부터 직접적 또는 간접적으로 측정이 가능하다. (중략)

  • PDF