• 제목/요약/키워드: 전단소음

검색결과 140건 처리시간 0.027초

자기장을 받는 복합재료 원통쉘의 동적특성 연구 (Study on the Dynamic Characteristics of Composite Shells Subjected to an Electromagnetic Field)

  • 박상윤;김성균;최종운;송오섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 춘계학술대회 논문집
    • /
    • pp.748-754
    • /
    • 2012
  • In this paper free vibration analysis of symmetric and cross-ply elastic laminated shells based on FSDT was performed through discretization of equations of motion and boundary condition. Model of laminated composite shells subjected to a combination of magnetic and thermal fields is developed. These coupled equations of motion are based on the electromagnetic equations (Faraday, Ampere, Ohm, and Lorenz equations) and thermal equations which are involved in constitutive equations. Dynamic characteristic of composite shells for change of magnetic fields is investigated.

  • PDF

중간 지지된 유체 유동 외팔형 원통셸의 임계유속 (Critical Fluid Velocity of Fluid-conveying Cantilevered Cylindrical Shells with Intermediate Support)

  • 김영완
    • 한국소음진동공학회논문집
    • /
    • 제21권5호
    • /
    • pp.422-429
    • /
    • 2011
  • The critical fluid velocity of cantilevered cylindrical shells subjected to internal fluid flow is investigated in this study. The fluid-structure interaction is considered in the analysis. The cantilevered cylindrical shell is supported intermediately at an arbitrary axial position. The intermediate support is simulated by two types of artificial springs: translational and rotational spring. It is assumed that the artificial springs are placed continuously and uniformly on the middle surface of an intermediate support along the circumferential direction. The steady flow of fluid is described by the classical potential flow theory. The motion of shell is represented by the first order shear deformation theory (FSDT) to account for rotary inertia and transverse shear strains. The effect of internal fluid can be considered by imposing a relation between the fluid pressure and the radial displacement of the structure at the interface. Numerical examples are presented and compared with existing results.

자기장을 받는 복합재료 판의 동적 특성 연구 (Dynamic Characteristics of Composite Plates Subjected to Electromagnetic Field)

  • 김성균;이근우;문제권;최종운;김영준;박상윤;송오섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.681-688
    • /
    • 2011
  • Structural model of laminated composite plates based on the first order shear deformable plate theory and subjected to a combination of magnetic and thermal fields is developed. Coupled equations of motion are derived via Hamilton's principle on the basis of electromagnetic equations (Faraday, Ampere, Ohm, and Lorenz equations) and thermal equations which are involved in constitutive equations. In order to obtain the implications of a number of geometrical and physical features of the model, one special case is investigated, that is, free vibration of a composite plate immersed in a transversal magnetic field. Special coupling effects between the magnetic and elastic fields are revealed in this paper.

  • PDF

랜덤하중이 가해진 복합재료 H-형 보의 동적 응답 해석 (Dynamic Response Analysis of Composite H-Type Cross-Section Beams to Random Loads)

  • 김성균;송봉건;송오섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 추계학술대회 논문집
    • /
    • pp.130-135
    • /
    • 2011
  • A study of the bending-extension-transverse shear coupled random response of the composite beams with thin-walled open sections subjected to various types of concentrated and distributed random excitations is dealt with in this paper. First of all, equations of motion of thin-walled composite H-type cross-section beams incorporating a number of nonclassical effects of transverse shear and primary and secondary warping, and anisotropy of constituent materials are derived. On the basis of derived equations of motion, analytical expressions for the displacement response of the composite beams are derived by using normal mode method combined with frequency response function method.

  • PDF

압축 및 전단탄성을 이용한 원형 방진 고무 마운트 개발 (Development of Conical Rubber Mount using Compression and Shear Elasticity)

  • 김종연;권오병;김영구;김영중
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 춘계학술대회논문집
    • /
    • pp.393-398
    • /
    • 2002
  • Rubber isolator has properties that can adjust easily stiffness and can be formed various shape. Also, it has high damping and is effective about structure-borne noise at high frequency range, So, rubber mount has widely used to isolate vibration at industrial equipment and construction field. However, rubber material is nonlinear and require enough consideration about shape factor whenever it is designed. The purpose of this paper is to develop conical rubber mount using compression and shear elasticity. The first, the dimension of mount is calculated by theoretical analysis considering design condition and static characteristics have been analyzed by FEM method. In addition, the fatigue test of rubber mount is performed to get reliability for product life and dynamic stiffness test is executed to get dynamic magnification factor. Finally, transmissibility test of vibration isolator has been carried out to suggest normal quantity data about vibration isolation.

  • PDF

효과적인 강자성체 평판구조물 검사를 위한 전 방향 전단파 자기변형 패치 트랜스듀서 개발 (Development of an omni-directional shear-horizontal wave magnetostrictive patch transducer for the effective inspection of a ferromagnetic plate)

  • 승홍민;김윤영
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.548-549
    • /
    • 2014
  • Omni-directional shear-horizontal magnetostrictive patch transducers have a disadvantage that magnetic flux leakage into the plate when it is installed on a ferromagnetic plate. The leakage produces poor transduction efficiency and unwanted wave mode excitation which should be avoided in guided wave inspections of large plate-like structures. In order to resolve these problems, we newly developed a method to reduce the leakage into the plate. In the method, the patch and the magnet are vertically lifted off and their optimal positions are determined by numerical simulations. Also, the verification of the developed method is successfully verified by experiments.

  • PDF

복합단면 감쇠보의 강제진동해석 (Forced Vibration Analysis of Damped Composite Beam)

  • 원성규;정의봉;배수룡
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.411-414
    • /
    • 2006
  • In this paper, the forced vibration of damped composite beam with arbitrary section was analyzed. The damping material was assumed to have either complex shear modulus or complex Young???smodulus. Damped composite beam could be modeled using beam elements with less D.O.F. rather than solid elements. Finite element method for these methods was formulated and programmed using complex values. The results of frequency responses revealed good agreement with those of NASTRAN in several beam structures.

  • PDF

선박용 4행정 디젤엔진의 크랭크축 강도해석에 관한 연구 (A Study on the Strength Analysis of Crankshaft for 4 Stroke Marine Diesel Engine)

  • 이돈출;박성현;강대선;김태언
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.66-72
    • /
    • 2006
  • Marine diesel engine production and refinements sought a continuous increase on mean effective pressure and thermal efficiency. These results in increased maximum combustion pressure within the cylinder and vibratory torque in crankshaft. As such, crankshaft should be designed and compacted within its fatigue strength. In this paper, the 8H25/33P($3,155ps{\times}900rpm$) engine for ship propulsion was selected as a case study, and tile strength analysis of its crankshaft is carried out by. simplified method recommended by IACS M53 and a detailed method with the crankshaft assumed as a continuous beam and bearing supported in its flexibility. The results of these two methods are compared with each other.

  • PDF

작동모드에 따른 ER마운트의 동특성 해석 (Dynamic Characteristics of ER Mounts with different operation modes)

  • 홍성룡;최승복;정우진;함일배;김두기
    • 소음진동
    • /
    • 제10권5호
    • /
    • pp.819-829
    • /
    • 2000
  • Dynamic Characteristics of two different types of ER(electro-rheological)mounts ; flow and shear mode types are analyzed and compared. As a first step, field-dependent Bingham models of a chemically treated starch/silicone oil-based ER fluid are empirically identified under both flow and shear mode conditions. The models are them incorporated to the governing equation of the corresponding mode ER mount. For the reasonable comparison between two ER mounts, electrode parameters such as electrode gap are designed to be same. Dynamic stiffness and displacement transmissibility of each ER mount are evaluated in frequency domain with respect to the intensity of electric filed. In addition, vibration control capability of each ER mount is investigated in both frequency and time domains by employing the skyhook controller.

  • PDF

경계조건에 따른 자기장 및 열하중을 받는 복합재료 원통셸의 진동해석 (Vibration Analysis of Composite Cylindrical Shells Subjected to Electromagnetic and Thermal Fields with Different Boundary Conditions)

  • 박상윤;김성균;최종운;송오섭
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2012년도 추계학술대회 논문집
    • /
    • pp.653-660
    • /
    • 2012
  • In this paper free vibration analysis of symmetric and cross-ply elastic laminated shells based on FSDT with two different boundary conditions(C-C, S-S) was performed through discretization of equations of motion and boundary condition. Model of laminated composite cylindrical shells subjected to a combination of magnetic and thermal fields is developed via Hamilton's variational principle. These coupled equations of motion are based on the electromagnetic equations (Faraday, Ampere, Ohm, and Lorenz equations) and thermal equations which are involved in constitutive equations. Variations of dynamic characteristics of composite shells with applied magnetic field, temperature gradient, and stacking sequence for each boundary conditions are investigated and pertinent conclusions are derived.

  • PDF