• Title/Summary/Keyword: 전단벽체

Search Result 204, Processing Time 0.03 seconds

Configurations of the Friction Dampers Installed in a Reinforced Concrete Shear Wall-Moment Frame System (철근콘크리트 전단벽-모멘트골조 형식 건물에 대한 마찰형 감쇠기 설치방식 비교연구)

  • Park, Ji-Hun;Kim, Gil-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.53-67
    • /
    • 2008
  • In this study, seismic control performance of friction dampers installed in a reinforced concrete shear wall-moment frame system, of which main lateral force resisting system is a shear wall, is investigated. Three configurations of friction dampers are investigated. One is a diagonal brace type reinforcing the shear wall directly, another is a diagonal brace type reinforcing the moment frame without the shear wall, and the other one is a vertical boundary element type installed at both ends of the shear wall. In addition, various levels of the total friction force and its distribution methods are examined. Time history analysis considering material nonlinearity is conducted for seismic loads increased by the enhanced design code compared to the initial design loads, and energy dissipation, lateral loads and structural member damages are analyzed. As a result, the shear wall-reinforcing diagonal brace type with the total friction force of 30 % of the reference friction force gives the best performance on the whole, and the distribution methods of the friction force do not have remarkable difference in effects. Also, concentrated installation in adjacent four stories shows just a little compromised control performance compared to the entire story installation.

Evaluation of Shear Strength of Unreinforced Masonry Walls Retrofitted by Fiber Reinforced Polymer Sheet (FRP로 보강한 비보강 조적 벽체의 전단강도 산정)

  • Bae, Baek-Il;Yun, Hyo-Jin;Choi, Chang-Sik;Choi, Hyun-Ki
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.305-313
    • /
    • 2012
  • Unreinforced masonry buildings represent a significant portion of the existing and historical buildings around the world. Recent earthquakes have shown the need for seismic retrofitting for these types of buildings. Various types of retrofitting materials (i.e., shotcrete, ECC and Fiber Reinforced Polymer sheets (FRPs)) for unreinforced masonry buildings (URM) have been developed. Engineers prefer to use FRPs, because these materials enhance the shear strength of the wall without expansion of wall sectional area and adding weight to the total structure. However, the complexity of the mechanical behavior of the masonry wall and the lack of experimental data from walls retrofitted by FRPs may cause problems for engineers to determine an appropriate retrofitting level. This paper investigate in-plane behavior of URM and retrofitted masonry walls using two different types of FRP materials to determine and provide information for the retrofitting effect of FRPs on masonry shear walls. Specimens were designed to idealize the wall of a low-rise apartment which was built in 1970s in Korea with no seismic reinforcements with an aspect ratio of 1. Retrofitting materials were carbon FRP and Hybrid sheets which have different elastic modulus and ultimate strain capacities. Consequently, this study evaluated the structural capacity of masonry shear walls and the retrofitting effect of an FRP sheet for in-plane behavior. Also, the results were compared to the results obtained from the evaluation method for a reinforced concrete beam retrofitted with FRPs.

Behavior of Coupling Shear Wall with New Openings (개구부 신설에 따른 병렬 전단벽의 거동특성)

  • Choi, Hyun-Ki;Choi, Youn-Cheul;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.152-160
    • /
    • 2008
  • Since wall system apartment used the shear wall as main lateral resistance member, installation of openings which causing section loss of walls may cause significant problem to structure. Also, there are few studies for inducing coupling beam or slabs which are occurred by installing openings. Therefore, this study planned isolated 2-story shear walls which are reduced three half-scale specimen to find out walls behavior characteristic. The test results showed that strength reduction caused by loss of effective section of walls and different result of stiffness and energy dissipation regarding to the coupling beam and coupling slabs.

Structural Performance of the RC Boundary Beam-Wall System Subjected to Axial Loads (축하중이 작용하는 철근 콘크리트 경계보-벽체 시스템의 압축성능 평가)

  • Han, Jin-Ju;Son, Hong-Jun;Kim, Dae-Jin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.1
    • /
    • pp.57-64
    • /
    • 2022
  • This study investigated the structural performance of the RC boundary beam-wall system subjected to axial loads that required lesser construction quantity and smaller floor height in comparison with the conventional RC transfer girder system. Four specimens of 1/2 scale were constructed, and their peak strengths under axial loads and failure characteristics were compared and analyzed. Test parameters included the ratio of the lower to the upper wall length, lower wall thickness, and stirrup details of the lower wall. In addition, three-dimensional nonlinear finite element analysis was performed to verify the effectiveness of the boundary beam-wall system. The peak strength of each specimen was similar to the nominal axial strength of the lower wall, indicating that the axial load was transferred smoothly from the upper to the lower wall. The contribution of the lower wall cross-section was high if the ratio of the lower to the upper wall length was small; the contribution was low if the out-of-plane eccentricity existed in the lower wall. The specimen with smaller stirrup distance and cross-ties in the lower wall showed higher initial stiffness and peak load than other specimens.

Experimental Study On Seismic Behavior Of Masonry Walls With Column (기둥 및 벽체가 보강된 조적벽체의 지진거동에 대한 실험적 연구)

  • Kikuchi, Kenji;Park, Kang-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.2 s.20
    • /
    • pp.93-105
    • /
    • 2006
  • In order to investigate the effect of the height of application point of lateral loads and reinforcing steel bars in walls and columns in improving the seismic behavior of confined concrete block masonry walls, an experimental research program is conducted. A total of twelve one-half scale specimens are tested under repeated lateral loads. Specimens are tested to failure with increasing maximum lateral drifts while a vertical axial load was applied and maintained constant. The specimens adopted are two-dimensional (2D) hollow concrete block masonry walls with different parameters such as shear span ratio, inflection point and percent of reinforcement in confining columns and walls. Test results obtained for each specimen include cracking patterns, load-deflection curve, and strains in reinforcement and walls in critical locations. Analysis of test data showed that above parameters generate a considerable effect on the seismic performance of confined concrete block masonry walls.

  • PDF

Test of RC Structures with Friction Damper (마찰형 댐퍼가 있는 RC 구조물에 관한 실험적 연구)

  • Kim, Young Ju;Ahn, Tae Sang;Lee, Chang Hwan;Kim, Sang Dae
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.30-30
    • /
    • 2011
  • 국내의 내진설계 기준은 1988년에 처음 도입되었으며, 최근 점차 강화되고 있는 실정이다. 공동주택에 주로 적용되는 전단벽식 구조시스템에서 증가된 지진력에 저항하기 위해서는 벽량과 철근이 증가하게 되어 공사비가 상승하게 된다. 이러한 단점을 보완하기 위한 제진설계의 필요성이 대두되고 있는 실정인데, 기존의 제진장치는 주로 가새형 또는 벽체형을 대부분이라 평면계획에 제약이 있다. 따라서 전단벽식 구조의 공동주택의 제진설계 시에는 우리나라와 같은 중 약진 지역에 적합하고 저렴한 비용으로 충분한 내진성능과 평면의 가변성을 확보할 수 있는 댐퍼의 선택이 필요하다. 본 연구의 목적은 기존의 가새형 및 벽체형 제진장치의 국내 공동주택 적용시의 문제점인 평면의 가변성 확보에 유리하고, 수동형 제진장치의 장점을 추구할 수 있는 마찰댐퍼를 삽입한 커플링보 제진시스템의 내진성능을 조사하는 것이다. 내진성능을 평가하기 위해서 실대형 커플링보 실험체를 계획하고 제작하였다. 실험체는 2개로 구성되어 있으며, 하나는 기존의 철근배근 상세를 갖는 철근콘크리트 커플링보 실험체와 커플링보에 마찰댐퍼가 삽입된 실험체이다. 횡하중에 대한 성능을 평가하기 위해서 유사정적 반복가력실험을 실시하였다. 엑츄에이터로부터 실험체 상보의 가력지그를 통해 하중이 전달되도록 하였으며, 가력은 최초 0.25%의 층간변형각부터 변위제어를 통해 목표 층간변형각인 1.5% 이상까지 진행되도록 하였다. 실험결과, 두 실험체의 이력곡선과 에너지 흡수능력을 평가하였다. RC 실험체는 핀칭현상이 관찰되었고, 가력이 진행됨에 따라 커플링보와 벽체에서의 균열이 확산되어 종국적으로 취성적인 커플링보의 전단파괴가 발생하였다. 마찰댐퍼를 삽입한 실험체는 계획된 마찰거동이 잘 발휘되어 목표 층간변형각인 1.5%까지 이선형거동이 잘 나타났다. 최대 내력은 RC 실험체가 3배 이상 크지만, 누적층간변형각에 따른 에너지 흡수능력은 마찰댐퍼 실험체가 2배 이상 우수한 결과를 보였으며, 커플링보 및 벽체에서의 균열이 매우 저감되었다.

  • PDF

Research on the Non-linear Analysis of Reinforced Concrete Walls Considering Different Macroscopic Models (거시적 모델을 다르게 고려한 철근콘크리트 벽체의 비선형 해석 연구)

  • Shin, Ji-Uk;Kim, Jun-Hee;You, Young-Chan;Choi, Ki-Sun;Kim, Ho-Ryong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.5
    • /
    • pp.1-11
    • /
    • 2012
  • In this paper, non-linear analysis was performed for Reinforced Concrete (RC) walls using different macroscopic models subjected to cyclic loading, and the analytical results were compared with previous experimental studies of RC walls. ASCE41-06 (American Society of Civil Engineers) specifies that the hysteresis behaviors of RC walls are different due to the aspect ratio of the walls. For a comparison between analytical and experimental results, a slender wall with an aspect ratio exceeding 3.0 and a squat wall with an aspect ratio of 1.0 were selected among previous research works. For the non-linear analysis, each test specimen was modeled using two different macroscopic methods: the first representing the flexural behavior of the RC wall, and the second considering the diagonal shear in the web of the wall. Through nonlinear analysis of the considered RC walls, the analytical difference of a slender wall was negligible due to the different macroscopic modeling methods. However, the squat wall was significantly affected by the considered components of the modeling method. For an accurate performance evaluation of the RC building with squat walls, it would be reasonable to use a macroscopic model considering diagonal shear.

Limiting Height Evaluation for Cold-Formed Steel Wall Panels (냉간성형강재 벽체 패널의 한계높이 산정)

  • Lee, Young ki;Miller, Thomas H.
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 2003
  • This study aimed to develop experiment-based limiting heights for interior, nonload-bearing, cold-formed steelwall panels sheathed with gypsum board and subjected to uniformly distributed lateral loadings. Th e limiting heightswere evaluated by their strength (for flexure, shear, and web crippling) and deflection. Limiting heights for deflectionlimits of L/360, L/240, and L/120 (where L is the height of the wall) were developed over the range of typical designpressures.

합성 전단벽에 대한 대각 압축 응력장 접근법

  • Lee, Eo-Jin;Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.5-6
    • /
    • 2010
  • In this study, assuming that there is a diagonal uniaxial compression field in combination with triangular homogeneous stress fields in the cracked concrete wall and a tensile stress of a steel plate occurs in the perpendicular to the direction of the diagonal compression field, an ultimate shear strength of a slender composite shear wall is estimated.

  • PDF