• Title/Summary/Keyword: 전단벽식 건축물

Search Result 10, Processing Time 0.019 seconds

Study on the Equation of Natural Period of Middle and Low Rise Building of Upper-Walled Lower Frame Type (중저층 상부벽식 하부골조 구조의 고유주기 산정식에 관한 연구)

  • Yoo, Suk-Hyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.60-67
    • /
    • 2021
  • According to the 「Guidelines of Structural Design for Piloti Building」 of the Ministry of Land, Infrastructure and Transport (2018), the natural period of middle and low rise building of upper-walled lower frame type, such as the domestic multiplex house in piloti style, is suggested for safety to apply the existing code formula of the wall structure. However, the current code formula of the wall structure was provided based on actual measurement of high-rise wall-type structures that mainly exhibit bending behavior. So it is considered that it is not suitable for a piloti-type house with four stories or less, where the wall behaves in shear. See also Park et al. (2000) confirmed that the effect of the lower frame part is greater than that of the upper wall part in the natural period of complex structures with 10 or more floors through analytical studies. Therefore, in this study, in order to examine the effect of the lower frame on the natural period of the middle and low-rise piloti structure, the estimation of natural period by the finite element analysis, approximation formula and ccurrent code formula was performed for the target structures with the shear and flexural stiffness of the upper wall and the shear stiffness of the lower frame as variables. As result, it was found that the change in the shear stiffness of the lower frame had a greater effect on the natural period of the whole building than the change in the bending or shear stiffness of the upper wall.

An Analysis on the seismic Performance of Additional Shear-Wall Construction for the Remodeling of Shear-Wall Type Apartment Buildings (벽식구조 아파트 리모델링을 위한 전단벽 신설공법의 내진성능 분석)

  • Hong, Geon-Ho;Jung, Woo-Kyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.153-162
    • /
    • 2007
  • The purpose of this study is to suggest structural design guidelines in additional shear-wall construction method for apartment remodeling with understanding the effects of the position, length and thickness of the additional walls. The slab-wall frames under seismic loads are analyzed using effective beam width model, which can practically evaluate the structural performance of existing building system. According to the results, proper design guidelines of additional shear-wall construction method(position, length and thickness) is suggested to get the required seismic performance.

Behavior of Coupling Shear Wall with New Openings (개구부 신설에 따른 병렬 전단벽의 거동특성)

  • Choi, Hyun-Ki;Choi, Youn-Cheul;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.152-160
    • /
    • 2008
  • Since wall system apartment used the shear wall as main lateral resistance member, installation of openings which causing section loss of walls may cause significant problem to structure. Also, there are few studies for inducing coupling beam or slabs which are occurred by installing openings. Therefore, this study planned isolated 2-story shear walls which are reduced three half-scale specimen to find out walls behavior characteristic. The test results showed that strength reduction caused by loss of effective section of walls and different result of stiffness and energy dissipation regarding to the coupling beam and coupling slabs.

An Study on the Measurement of Natural Period of Apartment for Seismic Design (내진설계를 위한 공동주택의 고유주기 측정에 관한 연구)

  • Kim, Dongbaek;Lee, Byeonghoon;Lee, Kwangjae;Lee, Induk
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.4
    • /
    • pp.487-492
    • /
    • 2015
  • Recently, apartment designs are tend to be changed from the standard pattern by many causes and the beam-column structures are getting popular instead of wall structure system. Therefore, for the effective use of planed space the heights of apartment are tend to be higher and higher. According to Korea Building Code, earthquake resistance designs or seismic design for those high rise apartments must be more attentive and accurate, especially, dynamic periods of structures must be exactly measured, because those are very important for equivalent static analysis. The important subject of this study is to investigate the safety factors and seismic performance for natural period of high rise buildings by comparing the natural periods getting from ambient vibration method with those of Korea Building Code.

Vertical Vibration Decrease Effect of Slab in Shear-Wall Structures According to Property and Size of Structural Members (전단벽식 공동주택의 부재 물성치 및 크기 변화에 따른 슬래브 수직진동 저감 효과)

  • Chun Ho-Min;Yoo Seung-Min
    • Journal of the Korean housing association
    • /
    • v.17 no.3
    • /
    • pp.61-69
    • /
    • 2006
  • Vertical vibrations on the slab of buildings are affected by types of vibration sources, transfer paths, and the material property and the size of members. Among these parameters, the vibration sources and the transfer path can not be controlled, but the property and the size of members can be controlled in the phase of design the members. In this study, the vibration responses according to the property and size of members were obtained by using a prediction program based on dynamic-stiffness matrix. Three parameters which are not usually considered as major factors for architecral planning were selected fur these analyses. They are the strength of materials, the thickness of wall and the thickness of slab. The ground vibration source located near a building was used as vibration input data in the analyses. This study has its originality on presenting appropriate property and size of structural members in order to reduce vertical vibration of slab in shear-wall structures. Analysing the results from the vibration estimation program according to the variations of parameters, the appropriate ratio among the sizes of structural members were proposed. From these results, the vibration level on the slab which is not constructed yet would be predicted and the vibration peak level can be reduced or shifted into the desirable frequency range. Therefore, the vertical vibration could be controlled in the phase of designing buildings.

Seismic Performance Preliminary Evaluation Method of Reinforced Concrete Apartments with Bearing Wall system (기존 철근콘크리트 벽식 공동주택의 내진 성능 예비 평가법에 관한 연구)

  • Chung, Lan;Woo, Sung-Sik;Choi, Ki-Young;Park, Tae-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.293-300
    • /
    • 2007
  • In Korea, the seismic design regulations was established since 1988 about regularity scale of structures. However, It was not established about seismic performance and evaluation method as the most existing buildings was constructed before Earthquake-Resistant Design(1988). In this study, for model structures which are 4 units of non-seismic designed apartment and 3 units of seismic designed in Korea performed seismic performance evaluation by suggested KISTC (2004). And the result compare to evaluate Capacity Spectrum Method by using MIDAS Gen and SDS. As a result, we observed that suggested KISTC's method have overestimated for shear stress and drift index. The purpose of this study provides most conformity seismic performance evaluation process and the appropriate method of calculating the seismic performance index in Korea.

Efficient Analysis of Shear Wall with Piloti (필로티가 있는 전단벽의 효율적인 해석)

  • 김현수;이동근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.4
    • /
    • pp.387-399
    • /
    • 2003
  • The box system that consists only of reinforced concrete walls and slabs we adopted in many high-rise apartment buildings recently constructed in Korea. Recently, many of the box system buildings with pilotis has been constructed to meet the architectural design requirements. This structure has abrupt change in the structural properties between the upper and lower parts divided by transfer girders. For an accurate analysis of a structure with pilotis, it is necessary to have the buildings modeled into a finer mesh. But it would cost tremendous amount of computational time and memory. In this study, an efficient method is proposed for an efficient analysis of buildings those have pilotis with drastically reduced time and memory. In the proposed analysis method, transfer gilders are modeled using super elements developed by the matrix condensation technique and fictitious beams are introduced to enforce the compatibility conditions at the boundary of each element. The analyses of example structures demonstrated that the proposed method used for the analysis of a structure with pilotis will provide analysis results with accuracy for the design of box system buildings.

Study on Factors Affecting on Energy Dissipation Coefficient of Reinforced Concrete Wall with Deformation-Dominated Behavior (변형지배거동을 하는 철근콘크리트 벽체의 에너지소산계수에 영향을 미치는 변수에 관한 연구)

  • Suk-Hyeong Yoo;Dae-Young Kang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.5
    • /
    • pp.38-46
    • /
    • 2024
  • In Korea, more than 60% of the population lives in apartment buildings with wall structures that exhibit brittle behavior during earthquakes. Therefore, in recent performance-based seismic design, the selection of the energy dissipation coefficient for reinforced concrete (RC) walls in nonlinear dynamic analysis is very important. Previous experimental studies have reported that the main factors affecting the energy dissipation capacity of RC walls are the axial force ratio, the spacing of transverse reinforcement of boundary element, and the aspect ratio. The Architectural Institute of Korea and the Korea Concrete Institute proposed a concentrated plastic hinge model and the energy dissipation coefficient for each RC member in the guideline 「Nonlinear Analysis Model for Performance-Based Seismic Design of Reinforced Concrete Building Structures, 2021.」 The proposed equation for the energy dissipation coefficient does not include the factors of axial force ratio and spacing of transverse reinforcement of boundary element. The aspect ratio is applied to the flexural plastic model, despite considering shear-dominated behavior. Therefore, it is necessary to examine the effect of the aspect ratio according to the analysis model. In this study, the influence of each factor on the energy dissipation coefficient was analyzed by comparing the results of existing experimental research, nonlinear analysis using the fiber element model of a nonlinear analysis program(Perform 3D), and the energy dissipation coefficient proposed in the guideline. As the axial force ratio increased, the energy dissipation coefficient decreased, and as the spacing of transverse reinforcement of boundary element decreased, the energy dissipation coefficient increased. Additionally, as the aspect ratio increased, the energy dissipation coefficient tended to increase, with the aspect ratio showing the greatest influence.

Seismic Behavior of a Five-story RC Structure Retrofitted with Buckling-Restrained Braces Using Time-dependent Elements (시간종속요소를 이용한 5층 RC건축물의 비좌굴가새 보강에 대한 내진거동)

  • Shin, Ji-Uk;Lee, Ki-Hak;Lee, Do-Hyung;Jeong, Seong-Hoon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.6
    • /
    • pp.11-21
    • /
    • 2010
  • This study presents seismic responses of 5-story reinforced concrete structures retrofitted with the buckling-restrained braces using a time-dependent element. The time-dependent element having birth and death times can freely be activated within the user defined time intervals during the time history analysis. The buckling-restrained brace that showed the largest energy dissipation capacity among the test specimens in previous research was used for retrofitting the RC buildings in this study. It was assumed that the first story of the damaged building under the first earthquake was retrofitted with the buckling-restrained braces considered as the time-dependent element before the second of the successive earthquakes occurs. Under this assumption, this paper compares seismic responses of the RC structures with the time-dependent element subjected to the successive earthquake. Subjected to the second earthquake, it was observed that activation of the BRB systems largely decreases deformation of the moment frame where the damage was concentrated under the first earthquake. However, damages to the shear wall systems were increased after activation of the BRB systems. Since the cumulative damages of the shear wall systems were infinitesimal compared with the retrofit effect of the moment frame, the BRB system was effective under the successive earthquake.

Effects of Seismic Loads with Different Return Period on Residential Building with RC Shear Wall Structure under Construction (주거용 RC 벽식 건물의 시공 중 재현주기에 따른 지진하중의 영향)

  • Choi, Seong-Hyeon;Kim, Jea-Yo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.2
    • /
    • pp.43-50
    • /
    • 2022
  • Even though the structural safety is confirmed in the design stage, the structural safety is not guaranteed in the construction stage because the structural system is not completed. In addition, since the construction period is shorter than the period of use of the building after completion, it is excessive to apply the same seismic load to the construction stage as in the design stage. ASCE 37-14 presents the concept of seismic load reduction factor during construction, but does not provide a clear application method. Therefore, in this study, the seismic load reduced according to the return period was applied to the example model of a residential middle-rise RC building. The construction stage of the example model was divided into five-story units, and seismic load with the change of the return period was applied to the construction stage models to analyze the change of seismic load during construction and to check the sectional performances of structural members. By comparing the design strength ratio of the shear wall at the design stage and the construction stage, the range of seismic load magnitudes that can assure the safety during construction of a residential middle-rise RC building was analyzed in terms of the return period.