• 제목/요약/키워드: 전기화학적 전환

검색결과 105건 처리시간 0.022초

LiCl-Li$_2$O 용융염계에서 우라늄 산화물의 전기화학적 금속전환 반응 메카니즘에 관한 연구 (A Study on the Electrolytic Reduction Mechanism of Uranium Oxide in a LiCl-Li$_2$O Molten Salt)

  • 오승철;허진목;서중석;박성원
    • 방사성폐기물학회지
    • /
    • 제1권1호
    • /
    • pp.25-39
    • /
    • 2003
  • 본 연구에서는 고온의 LiCl-Ll$_2$O 용융염계에서 우라늄 산화물의 금속전환과 Li$_2$O의 전해반응이 동시에 진행되는 통합 반응 메카니즘을 기초로 한 전기화학적 금속전환기술을 제안하였다. 본 실험에서는 전기화학적 환원반응에 의해 생성된 Li 금속이온이 음극에 전착과 동시에 우라늄 산화물과 반응하여 금속전환율 99 % 이상의 우라늄 감속을 생성하는 통합 반응 메카니즘을 확인할 수 있었다. 또한 전기화학적 금속전환기술의 공정 적용성 평가 일환으로 우라늄 산화물의 금속전환성, 반응 메카니즘 규명, Li$_2$O의 closed recycle rate 및 물질전달 특성 등의 기초 데이터를 확보하였다 향후 전기화학적 금속전환기술은 LiCl-Li 용융염계의 금속전환공정의 반응조건 제한성 해소, 금속전환율 향상 및 공정의 단순화 등의 기술성과 경제성 향상 측면에서 획기적인 방안으로 고려될 수 있을 것으로 판단된다.

  • PDF

사용후핵연료의 전기화학적 금속전환을 위한 5kg $U_{3}O_{8}$ Batch 규모의 Mock-up 시험 (5kg $U_{3}O_{8}$ Batch Scale Mock-up Test for the Electrochemical Reduction of Spent Oxide Fuel)

  • 오승철;허진목;홍순석;이원경;서중석;박승원
    • 방사성폐기물학회지
    • /
    • 제1권1호
    • /
    • pp.47-53
    • /
    • 2003
  • 한국원자력연구소에서는 산화물 형태의 사용후핵연료를 용융염 매질에서 금속으로 전환함으로써 사용후핵연료의 발열량, 부피 및 방사능을 1/4로 감소시킬 수 있는 전기화학적 금속전환공정을 개발하고 g 규모(3-40g $U_{3}O_{8}$ batch)로 기초실험을 수행하고 있다. 본 연구에서는 전기화학적 금속전환 장치를 5kg $U_{3}O_{8}$ batch 규모로 설계 제작하고, 목표로 하고 있는 20kg $U_{3}O_{8}$ batch 규모 핫셀 실증을 위한 장치설계자료를 산출하기 위해 mock-up test를 수행하였다. 운전변수에 따른 $U_{3}O_{8}$의 전기화학적 환원거동을 규명하였으며, $U_{3}O_{8}$ 분말을 99% 이상 금속전환하여 전기화학적 금속전환공정의 타당성을 kg 규모로 검증할 수 있었다.

  • PDF

ZnC2O4의 Oxalate로의 효과적 분리 및 이의 전기화학적 환원을 통한 글리콜산으로의 전환 (Facile Separation of Zinc Oxalate to Oxalate and its Conversion to Glycolic Acid via Electrochemical Reduction)

  • 임선미;박이슬
    • 청정기술
    • /
    • 제29권1호
    • /
    • pp.46-52
    • /
    • 2023
  • 옥살산(oxalic acid)은 기존에 질산을 사용한 carbohydrates의 산화 공정에 의해 얻어질 수 있으며 여러 분야에서 사용되고 있다. 하지만 이 반응은 다양한 질소 산화물을 형성하고 많은 증간 생산물의 분리를 필요로 하기에 복잡하고 환경에 유해하다. 한편, 이산화탄소로부터 전기화학적 방법에 의해 옥살산을 높은 효율로 얻을 수 있는 방법이 제안되었다. 아연 전극 산화에 의해 생성된 Zn2+이온과 CO2 환원에 의한 oxalate이온의 반응으로 zinc oxalate(ZnC2O4)가 얻어진다. 이후 산처리에 의해 옥살산이 생성될 수 있으나 강산과 열을 필요로 한다. 본 연구에서는 CO2의 전기화학적 전환으로 형성된 ZnC2O4을 강산을 사용하지 않고, 간단하고 분리가 쉬운 방법을 적용하여 옥살산으로 전환하고자 한다. 또한, 고부가 물질인 글리콜산으로 더 전환시킴으로써 이산화탄소에서 고부가 물질로의 전환 가치를 높이고자 하였다. ZnC2O4를 상온, 상압에서 화학적 방법 및 여과 과정을 통해 효과적으로 Zn(OH)2 입자와 oxalate 용액으로 분리하였으며 얻어진 Zn(OH)2와 oxalate는 전기화학적 방법을 사용하여 각각 Zn, 글리콜산으로 전환되었다.

$SnO_2$양극을 이용한 전기화학적 금속전환 mock-up(5 kg $U_3O_8$/batch) 시험

  • 오승철;홍순석;이원경;허진목;서중석;박성원
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2004년도 학술논문집
    • /
    • pp.352-352
    • /
    • 2004
  • 산화물 형태의 사용후핵연료를 고온 용융염계에서 금속 형태로 전환하는 전기화학적 금속전환 공정 개발의 일환으로 $U_3O_8$ 분말로 충전된 다공성 마그네시아 용기 및 스테인레스강 고체전극으로 구성된 일체형 음극과 $SnO_2$ 재질의 양극을 사용하여 5kg $U_3O_8$/batch 규모의 mock-up 시험을 수행하였다. 백금 재질의 양극을 사용하였을 때 99% 이상의 금속전환율을 보인 동일한 전하량을 공급하고 실험을 중단한 결과 X-선 회절분석(XRD) 및 열중량 분석(TG)으로부터 스테인레스강 고체전극 부분에서는 거의 금속으로 전환되었으나 다공성 마그네시아 용기 부분에서는 비교적 금속전환율이 낮은 경향을 나타내었다.(중략)

  • PDF

사용후핵연료의 전기화학적 금속전환을 위한 5kg $U_3O_8$/Batch 규모의 Mock-up시험 (5kg $U_3O_8$/Batch Scale Mock-up Test for the Electrochemical Reduction of Spent Oxide Fuel)

  • 오승철;허진목;홍순석;이원경;서중석;박성원
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2003년도 가을 학술논문집
    • /
    • pp.358-362
    • /
    • 2003
  • 산화물 형태의 사용후핵연료를 용융염에서 금속 형태로 전환하여, 발열량, 부피 및 방사능을 1/4로 감소시킬 수 있는 전기화학적 금속전환 공정을 개발하고, 5kg $U_3O_8$/Batch 규모의 mock-up 실험을 수행하였다. 본 연구에서는 전해 셀의 운전변수를 해석하였으며, 아울러 hot test를 위한 장치개발 연구도 병행하였다. 전기화학적 금속전환 공정을 이용하여 $U_3O_8$ 형태의 천연우라늄 분말을 99% 이상 금속전환할 수 있었으며, 또한 20kg $U_3O_8$/batch 규모 장치의 설계자료를 산출할 수 있었다.

  • PDF

용융탄산염 전해질에서 이산화탄소의 전기화학적 전환에 전극 재질이 미치는 영향 (Effects of Electrode Material on Electrochemical Conversion of Carbon Dioxide Using Molten Carbonate Electrolyte)

  • 주홍수;엄성용;강기중;최경민;김덕줄
    • 대한기계학회논문집B
    • /
    • 제41권11호
    • /
    • pp.727-734
    • /
    • 2017
  • 이산화탄소의 농도를 줄이는 방법 중 하나로 전기화학을 이용하여 이산화탄소를 고부가 가치인 탄소로 전환하는 연구가 진행 중이다. 본 연구에서는 4.0 V, $600^{\circ}C$의 실험 조건에서 은, 니켈, 백금, 이리듐 전극을 사용하였다. 720분 동안 이산화탄소의 전환을 수행하였으며, 각 전극에서 생성된 탄소는 열중량 분석 및 XRD 분석을 수행하였다. 이산화탄소의 전환 및 생성 탄소의 양은 은, 백금, 니켈, 이리듐으로 나타났다. 열중량 분석을 통해 각 전극에서 생성된 탄소는 유사한 열 반응성을 가지며, XRD 분석을 통해 전극의 반응성에 따라 탄소의 결정성이 달라짐을 확인할 수 있었다. 은 전극은 전기화학적 전환 성능은 가장 높지만 약한 내구성을 보이며, 전극의 반응성 및 내구성을 고려하였을 때 백금이 4개의 재질 중에서 가장 적합함을 확인하였다.

$CO_2$ Reforming과 $CO_2$의 화학적 전환

  • 전기원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제45회 하계 정기학술대회 초록집
    • /
    • pp.71.2-71.2
    • /
    • 2013
  • 천연가스를 화학적 전환에 의해 부가가치를 높이기 위해서는 리포밍에 의해 합성가스(CO/H2)를 경유하는 간접전환경로가 현재로서는 가장 현실적인 방법이라 할 수 있다. 천연가스를 이용한 합성가스 제조기술은 수증기개질법(SRM), 이산화탄소 개질법(CDR, dry reforming), 부분산화법, 촉매 부분 산화법, 자열개질법 등으로 구분되며, 최근에는 각각의 제조방법의 장점을 고려하여 혼합개질법 또는 일련의 리포머 조합 방법이 개발되고 있다. CDR은 촉매 하에서 메탄과 이산화탄소의 직접접촉에 의해 반응이 일어나며, 수소와 일산화탄소의 비가 같은 합성가스가 제조된다. SRM에 비하여 고온에서 반응이 일어나고 전환율이 더 낮으므로 에너지 소비가 상대적으로 높다. 하지만, SRM과 함께 사용하면 합성가스 비율을 F-T합성이나 메탄올 합성에 적절한 비율로 조절이 가능한 장점이 있으며, 온실가스를 저감시킬 수 있는 전환기술로도 각광받고 있다. 본 발표에서는 최근의 CDR을 이용한 가스로부터 합성석유(GTL)와 메탄올을 고효율로 생산하는 기술 개발 동향에 대해서 소개하고자 한다.

  • PDF

이산화탄소의 전기화학적 변환 (Electrochemical Conversion of Carbon Dioxide)

  • 송지은;신운섭
    • 전기화학회지
    • /
    • 제12권2호
    • /
    • pp.131-141
    • /
    • 2009
  • 이산화탄소의 유용한 화합물로의 전환은 온실가스 증가로 인한 기후변화에 따른 환경문제의 해결 뿐 아니라 탄소원의 재활용이란 관점에서 무척 중요하다. 그러나 탄소화합물 중 가장 안정된 이산화탄소를 다른 유용한 화합물로 변환시키기 위해서는 에너지가 투입되어야 하고 효과적인 전환을 위하여 촉매의 개발 및 관련된 반응 조건의 확립이 필요하다. 본 총설에서는 그 동안 전기화학적으로 이산화탄소를 변환시킨 연구 내용들을 전극재료, 무기화합물, 효소를 이산화탄소의 환원 촉매로서 이용한 경우로 나누어 전체적으로 살펴보았다. 선택성이 좋고 효율적이며 안정성을 가진 촉매는 아직 개발되지 않은 상황이므로 앞으로 많은 연구가 진행되어야 할 분야이다.