• Title/Summary/Keyword: 전기화학적 식각정지

Search Result 19, Processing Time 0.032 seconds

Fabrication of SOI Structures with Buried Cavities for Microsystems SDB and Electrochemical Etch-stop (SDB와 전기화학적 식각정지에 의한 마이크로 시스템용 매몰 공동을 갖는 SOI 구조의 제조)

  • Chung, Gwiy-Sang;Kang, Kyung-Doo;Choi, Sung-Kyu
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.54-59
    • /
    • 2002
  • This paper describes a new process technique for batch process of SOI(Si-on-Insulator) structures with buried cavities for MEMS(Micro Electro Mechanical System) applications by SDB(Si-wafer Direct Bonding) technology and electrochemical etch-stop. A low-cost electrochemical etch-stop method is used to control accurately the thickness of SOI. The cavities were made on the upper handling wafer by Si anisotropic etching. Two wafers are bonded with an intermediate insulating oxide layer. After high-temperature annealing($1000^{\circ}C$, 60 min), the SDB SOI structure with buried cavities was thinned by electrochemical etch-stop. The surface of the fabricated SDB SOI structure have more roughness that of lapping and polishing by mechanical method. This SDB SOI structure with buried cavities will provide a powerful and versatile substrate for novel microsensors arid microactuators.

Flatness of a SOB SOI Substrate Fabricated by Electrochemical Etch-stop (전기화학적 식각정지에 의해 제조된 SDB SOI기판의 평탄도)

  • Chung, Gwiy-Sang;Kang, Kyung-Doo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.126-129
    • /
    • 2000
  • This paper describes on the fabrication of a SOI substrate by SDB technology and electrochemical etch-stop. The surface of the thinned SDB SOI substrate is more uniform than that of grinding or polishing by mechanical method, and this process was found to be very accurate method for SOI thickness control. During electrochemical etch-stop, leakage current versus voltage curves were measured for analysis of the open current potential (OCP) point, the passivation potential (PP) point and anodic passivation potential. The surface roughness and the controlled thickness selectivity of the fabricated a SDB SOI substrate were evaluated by using AFM and SEM, respectively.

  • PDF

A study on SOI structures thinning by electrochemical etch-stop (전기화학적 식각정지에 의한 SOI 박막화에 관한 연구)

  • 강경두;정수태;류지구;정재훈;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.583-586
    • /
    • 2000
  • The non-selective method by polishing after grinding was used widely to thinning of SDB SOI structures. This method was very difficult to thickness control of thin film, and it was dependent on equipments. However electrochemical etch-stop, one of the selective methods, was able to accurately thickness control and etch equipment was very simple. Therefore, this paper described with the effect of leakage current and electrodes on electrochemical etch-stop. Consequentially, PP(passivation potential) was changed according to the kinds of contact and contact sizes, but OCP(open current potential) was not change with range of -1.5~-1.3V

  • PDF

Fabrication of SOI structures whit buried cavities by SDB and elelctrochemical etch-stop (SDB와 전기화학적 식각정지에 의한 매몰 cavity를 갖는 SOI구조의 제작)

  • 강경두;정수태;류지구;정재훈;김길중;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.579-582
    • /
    • 2000
  • This paper described on the fabrication of SOI(Si-on-insulator) structures with buried cavities by SDB technology and eletrochemical etch-stop. The cavity was fabricated the upper handling wafer by Si anisotropic etch technique. SDB process was performed to seal the fabricated cavity under vacuum condition at -760mmHg. In the SDB process, captured air and moisture inside of the cavities were removed by making channels towards outside. After annaling(100$0^{\circ}C$, 60 min.), the SDB SOI structure was thinned by electrochemical etch-stop. Finally, it was fabricated the SDB SOI structure with buried cavities as well as an accurate control and a good flatness.

  • PDF

The Fabrication of a SDB SOI Substrate by Electrochemical Etch-stop (전기화학적 식각정지에 의한 SDB SOI기판의 제작)

  • 정귀상;강경두
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.5
    • /
    • pp.431-436
    • /
    • 2000
  • This paper describes on the fabrication of a SOI substrate by SDB technology and electrochemical etch-stop. The surface of the thinned SDB SOI substrate is more uniform than that of grinding or polishing by mechanical method and this process was found to be a very accurate method for SOI thickness control. During electrochemical etch-stop leakage current versus voltage curves were measured for analysis of the open current potential(OCP) point the passivation potential(PP) point and anodic passivation potential. The surface roughness and the controlled thickness selectivity of the fabricated a SDB SOI substrate were evaluated by using AFM and SEM respectively.

  • PDF

The characteristics of electrochemical etch-stop in THAH/IPA/pyrazine solution (TMAH/IPA/pyrazine 용액에서의 전기화학적 식각정지특성)

  • Chung, G.S.;Park, C.S.
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.426-431
    • /
    • 1998
  • This paper describes electrochemical etch-stop characteristics in THAH/IPA/pyrazine solution. I-V curves of n- and p-type Si in THAH/IPA/pyrazine solution were obtained. OCP(Open Circuit Potential) and PP (Passivation Potential) of p-type Si were -1.2 V and 0.1 V, and of n-type Si were -1.3 V and -0.2 V, respectively. Both n- and p-type Si, etching rates were abruptly decreased at potentials anodic to the PP. The etch-stop characteristics in THAH/IPA/pyrazine solution were observed. Since accurate etching stop occurs at pn junction, Si diaphragms having thickness of epi-layer were fabricated. Etching rate is highest at optimum etching condition, TMAH 25wt.%/IPA 17vol.%/pyrazine 0.1g/100ml. thus the elapsed time of etch-stop was reduced.

  • PDF

Thinning of SDB SOI by electrochemical etch-stop (전기화학적 식각정지에 의한 SDB SOI의 박막화)

  • Chung, Yun-Sik;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1369-1371
    • /
    • 2001
  • This paper describes on thinning SDB SOI substrates by SDB technology and Electro-chemical etch-stop. The surface of the fabricated SDB SOI substrates is more uniform than that grinding or polishing by mechanical method, and this process is possible to accurate SOI thickness control. During Electrochemical etch-stop, leakage current versus voltage curves were measured for analysis of the open current potential (OCP) point and the passivation potential (PP) poin and determinated to anodic passivation potential. The surface roughness and selectively controlled thickness of the fabricated SOI substrates were analyzed by using AFM and SEM, respectively.

  • PDF

Fabrication of 3-dementional microstructures for bulk micromachining by SDB and electrochemical etch-stop (SDB와 전기화학적 식각정지에 의한 블크 마이크로머신용 3차원 미세구조물 제작)

  • Chung, Yun-Sik;Chung, Gwiy-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1890-1892
    • /
    • 2001
  • This paper described on the fabrication of microstructures by DRIE(Deep Reactive Ion Etching). SOI(Si-on-insulator) electric devices with buried cavities are fabricated by SDB technology and electrochemical etch-stop. The cavity was fabricated the upper handling wafer by Si anisotropic etch technique. SDB process was performed to seal the fabricated cavity under vacuum condition at -750 mm Hg. In the SDB process, captured air and moisture inside of the cavities were removed by making channels towards outside. After annealing(1000$^{\circ}C$, 60 min.), the SDB SOI structure was thinned by electrochemical etch-stop. Finally, it was fabricated microstructures by DRIE as well as a accurate thickness control and a good flatness.

  • PDF

Fabrication of SOl Structures For MEMS Application (초소형정밀기계용 SOl구조의 제작)

  • Chung, Gwiy-Sang;Kang, Kyung-Doo;Chung, Su-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.301-306
    • /
    • 2000
  • This paper describes on the fabrication of a SOI substrate by SDB technology and electrochemical etch-stop. The surface of the thinned SDB SOI substrate is more uniform than that of grinding or polishing by mechanical method, and this process was found to be a very accurate method for SOI thickness control. During electrochemical etch-stop, leakage current versus voltage curves were measured for analysis of the open current potential(OCP) point, the passivation potential(PP) point and anodic passivation potential. The surface roughness and the controlled thickness selectivity of the fabricated a SDB SOI substrate were evaluated by using AFM and SEM, respectively.

  • PDF