직접 메탄올 연료전지 (DMFCs)는 친환경적이고 낮은 작동 온도로 인한 빠른 구동, 높은 에너지 밀도 등 다양한 장점을 가지고 있어 차세대 에너지 변환소자로 많은 관심을 받고 있다. 직접 메탄올 연료전지는 메탄올을 연료로 사용하며, 메탄올이 보유하고 있는 화학적 에너지를 전기 에너지로 변환하는 장치로써 음극에서는 백금 촉매로 인한 메탄올 산화반응, 양극에서는 환원 반응이 일어나며 전기화학적 구동을 하게 된다. 하지만 일산화탄소 피독으로 인한 촉매 활성 저하, 메탄올의 cross over, 백금 촉매 사용으로 인한 고비용 등의 문제점을 가지고 있다. 따라서 많은 연구자들이 백금 사용량을 줄이고 백금 촉매를 고르게 분포하기 위해 값이 저렴하고 넓은 비표면적을 갖는 탄소계 (graphite, graphene, carbon nanotube, carbon nanofiber 등) 지지체 재료를 도입하고 있다. 이 중 탄소나노섬유 (carbon nanofibers, CNFs)는 우수한 전기전도도와 열적/화학적 안정성을 가지고 있으며, 특히 넓은 비표면적을 가지고 있어 백금 촉매의 지지체로서 많은 연구가 진행되고 있다[1]. 따라서 우리는 전기방사법을 활용하여 넓은 비표면적을 보유하는 다공성 탄소나노섬유를 성공적으로 합성하였다. 또한, 이를 백금 촉매의 지지체로 도입하여 직접 메탄올 연료전지를 위한 다공성 탄소나노섬유에 담지된 고분산성 백금 촉매를 제조하였다. 제조한 다공성 탄소나노섬유의 형상 및 구조 분석은 주사전자 현미경 (field-emission scanning electron microscopy)와 투과전자 현미경 (transmission electron microscopy)를 이용하여 분석하였고, 결정구조와 화학적 결합상태는 X-선 회절분석 (X-ray diffraction) 및 X-선 광전자 분광법 (X-ray photoelectron spectroscopy)를 이용하여 규명하였다. 전기화학적 특성은 순환 전압 전류법 (cyclic voltammetry)를 이용하였다. 이러한 실험 결과들을 바탕으로 다공성 탄소나노섬유에 담지된 고분산성 백금 촉매의 자세한 특성을 본 학회에서 다루도록 하겠다.
본 연구는 고성능 유연 전극 소재 개발을 위한 기초 연구로, 유연 전극 소재의 성능을 향상시키기 위해 금속 산화물 CuO nanoparticles (CuO NPs)를 도입하여 탄소나노튜브 섬유(carbon nanotube fiber; CNT fiber) 표면 위에 전기화학적 증착시켜 CNT fiber/CuO NPs 전극을 합성하고, 이를 전기화학적 비효소 글루코스 센서에 적용하였다. 이 전극의 표면 및 elemental composition 분석은 주사전자 현미경(SEM)과 에너지분산형 분광분석법(EDS)을 이용하였으며, 전극의 전기화학적 특성 및 글루코스에 대한 센싱 성능은 순환전압 전류법(CV)과 전기화학 임피던스법(EIS), 시간대전류법(CA)을 통해 조사되었다. CNT fiber/CuO NPs 전극은 CNT fiber의 우수한 특성과 함께 CuO NPs 도입에 따른 약 2.6배의 유효 전극면적(active surface area) 증가 효과와 11배 정도의 향상된 전자전달(electron transfer) 특성 및 우수한 전기적 촉매 활성(electrocatalytic activity) 덕분에 CNT fiber 유연 기반 전극의 글루코스 검출에 대한 성능이 개선되었다. 따라서, 본 연구를 기반으로 다양한 나노구조체를 활용한 고성능 유연 전극 소재 개발이 기대된다.
본 논문에서는 분체 특성 평가 연구의 국제 동향과 입자형태, 입도분포, 비표면적, 분체밀도, 기공도, 화학분석 평가분야의 기본원리, 특히 측정시 변수들의 영향과 이러한 특성변화에 따른 전기적성질 변화에 대하여 간단히 언급을 하였다. 분체 특성평가분야의 연구는 선진국에 비해 낙후되어 있고 관심도 또한 낮은 형편이다. 이 분야의 학문적, 산업적인 중요점을 고려할 때, 분체 특성 평가에 대한 기초 및 응용연구가 활성화되었으면 한다.
$SnO_2$을 이용한 반도체는 기체 센서, 트랜지스터, 태양전지와 같은 여러 분야에 적용 가능하기 때문에 많은 각광을 받고 있다. $SnO_2$을 이용한 반도체 소자는 높은 화학적 안정성과 독특한 물리 화학적 특성을 지니고 있을 뿐만 아니라 부피에 대한 높은 표면적 비율을 가지고 있다. 우수한 $SnO_2$나노구조를 얻기 위해서 전자관 박막증착, 졸겔법, 물리적 증기증착, 열증착과 같은 다양한 방법들이 사용되었다. 다양한 합성 방법들 중에서 전기화학 증착법은 높은 성장율, 대면적 공정, 낮은 가격과 같은 장점을 가지고 있어 많은 연구가 진행되었지만, $SnO_2$ 구조의 성장조건에 따른 체계적인 연구는 진행되지 않았다. 본 연구는 indium-tin-oxide (ITO)로 코팅된 유리 기판 위에 전기화학 증착법을 사용하여 다양한 성장 조건에 따라 성장된 $SnO_2$나노구조들의 물리적 특성들을 관찰하였다. ITO 유리 기판 위에 성장된 $SnO_2$나노구조는 음극의 전구체와 전류의 상호작용에 의해 생성되는 산소 분자의 환원에 의해 형성된다. $SnO_2$나노구조의 모양은 전기화학 증착의 성장 환경에 따라 달라진다. $SnO_2$나노구조를 관찰하기 위해 시간에 따른 전압-전류, X-ray광전자분광법, 주사형전자현미경, X-ray회절분석법을 사용하여 측정하였다. ITO 유리 기판 위에 성장한 $SnO_2$ 소자에 서로 다른 인가 전압을 가해 주었을 때에 따른 전류밀도를 측정하였다. 일정한 인가전압에서 $SnO_2$나노구조의 X-ray광전자분광법 측정 을 통해 화학적 결합과 X-ray회절분석법 통한 $SnO_2$ 성장 방향을 관찰하였다. 주사형전자현미경 측정을 통하여 $SnO_2$의 표면을 관찰하였다
최근 전기자동차용 이차전지 등의 수요가 급증하면서 효율적인 리튬 화합물의 생산이 큰 주목을 받고 있다. 바이폴라막 전기투석은 친환경적이며 경제성 및 효율성이 우수한 전기화학적 리튬 화합물 생산공정으로 알려져 있다. 바이폴라막 전기투석 공정의 효율은 바이폴라막의 성능에 의해 좌우되기 때문에 바이폴라막의 선택이 매우 중요하다. 본 연구에서는 세계적으로 가장 널리 사용되고 있는 대표적인 상용 BPM인 Astom사의 BP-1E 및 Fumatech사의 FBM을 비교 분석함으로써 전기화학적 LiOH 생산을 위한 BPED 공정에 적합한 BPM의 특성을 도출하고자 하였다. 체계적인 평가를 통해 BPM의 특성중 막의 이온전달저항 및 co-ion leakage를 줄이는 것이 가장 중요하고 이러한 관점에서 BP-1E가 FBM보다 더 우수한 성능을 가지고 있음을 확인하였다.
한경오염의 증가에 따라 광촉매 물질을 이용한 환경 정화의 필요성이 대두되고 있다 [1]. 광촉매와 전기화학셀은 빛을 이용하여 다른 에너지를 생산하는 능력을 가지고 있다. 이 전기화학셀의 성능향상을 위해서는 적절한 밴드갭을 이용한 광흡수의 증가, 전자재결합의 감소, 전기화학적 반응 표면의 증가가 필요하다. 산화 아연은 잘 알려진 n형 산화물 반도체로서 좋은 전기적 특성과 광촉매 성능으로 전기화학셀에 적합한 소재이다. 그러나 산화 아연은 액체 전해물질 상에서 안정성이 좋지 못하다 [2]. 이를 해결하기 위해 단층 그래핀 혹은 풀러렌(C60)을 이용하여 산화아연을 코팅하는 방법을 제안하였는데, 풀러렌을 사용 시 단층 그래핀에 비하여 전기화학셀의 전기화학적 반응은 높았으나 안정성은 더 떨어지는 모습을 보였다 [3]. 본 연구에서는 다층 그래핀을 이용하여 전기화학적 반응도 높고 안정성도 높은 산화아연-다층 그래핀 양자점의 합성 및 이를 이용한 전기화학셀 소자의 특성을 연구하였다. X선 회절법, 라만 분광법, 투과 전자 현미경, 광발광 분광기, 시간-분해성 광발광 분광기를 이용하여 산화아연-다층 그래핀 양자점의 특성을 분석하였고, 이를 이용하여 광양극을 제작하여 전기화학적 특성을 관측하였으며 로다민 B 염료를 이용한 분해 테스트를 통하여 광촉매 성능을 확인하였고 사이클 테스트를 통하여 안정성을 확인하였다.
탄소 나노튜브는 기계적인 강도가 크고, 표면적이 넘으며 전기전도도가 우수할 뿐만 아니라 화학적으로도 안정하기 때문에 최근 여러분야에 적용하려는 연구가 활발히 진행되고 있는 나노물질이다. 특히 바이오센서에서 탄소 나노튜브는 작업 전극의 활성을 증대시키는 물질로써, 안정적인 효소 고정화에 기여하는 reservior로써 그리고 반응에서 생성된 전자를 전극에 효과적으로 전달하는 매개체로써 이용되고 있다. 본 연구에서는 다중벽 탄소 나노튜브(multi-walled carbon nanotube ; MWNT)를 화학처리하여 작용기를 유도한 후 효소와 반응시킨 용액으로 스크린 프린팅 방법으로 제작된 탄소전극의 표면을 개질하는 방법으로 바이오센서를 제작하였다. 이렇게 제작된 바이오센서를 탄소 나노튜브를 이용하지 않은 바이오 센서와 전기화학적으로 분석한 결과 감도가 약 3배정도 증가하는 결과를 얻을 수 있었다. 이것은 효소반응 시 발생된 전자가 나노튜브를 통해서 전극에 효과적으로 전달됨을 의미한다.
산업의 발달 및 인구 증가에 따라 발생되는 폐수의 종류는 다양해지고 있으며, 폐수의 처리를 위해서는 주로 생물학적 처리를 먼저 검토하게 된다. 하지만 최근 폐수의 성분은 생물학적으로 처리하기 어려운 난분해성 요인(고농도의 염분, 독성 유기용매, 중금속 등)이 존재 할 뿐 아니라, 생물학적 처리 후 존재하는 잔류 유기물은 환경부에서 제시하는 방류수 기준을 만족시키기에 어려움이 있다. 이러한 난분해성 요인을 제거하기 위해서 전기 화학적 처리의 필요성이 대두되고 있으며, 다양한 고도산화기술들이 제시되고 있다. 그 중 처리시간의 단축으로 인한 처리비용 절감과 산화제 발생에 따른 높은 처리 효율로 인해 전기화학적 폐수산화처리에 대한 연구가 활발히 진행되고 있는 실정이다. 본 연구에서는 기존에 사용되어 지고 있는 전기화학적 폐수산화처리를 위한 불용성 전극을 BDD 전극으로 대체하여 다양한 폐수에 전기분해 처리 적용 가능성을 검토하고자 기존 BDD 전극의 기판 모재로 이용되던 Si, Nb 대신에 Ti 기판 위에 BDD 형성시켜 전극을 제작하였고, 폐수의 전기분해 적용 가능성을 확인하기 위하여 축산폐수, 해양폐수, 질산염폐수 등 실제 폐수를 채수하여 폐수 내 유기물의 전기분해 처리 효율을 분석하였다. 이에 Ti 모재 기판에 증착된 BDD 전극을 이용하여 폐수 내 유기물의 전기분해 처리효율을 분석 한 결과, 축산폐수의 경우 처리시간 150분에 95% 이상 처리효율을 나타냈으며, 해양폐수의 경우 처리시간 60분에 98% 이상의 유기물 제거 효결과가 나타남에 따라 축산폐수와 선박 평형수, 양식장폐수 등 다양한 폐수에 적용이 가능할 것으로 판단되며, 기존에 적용되어 지고 있는 고도산화처리 기술을 BDD 전극을 이용한 전기화학적 처리로 대체 할 수 있을 것으로 기대할 수 있다.
방식 코팅 기술은 조선해양산업은 물론 에너지, 철강 및 비철 소재, 건설 산업 등 산업 전반에서 폭넓게 적용되고 있다. 또한 산업 고도화에 따라 점차 가혹해지는 소재의 적용 환경을 고려해보면 향후 지속적으로 산업 수요가 증대될 것으로 예상할 수 있는 기술이다. 특히 아크 열용사법을 이용한 방식 코팅 기술은 미국이나 일본과 같은 선진국에서는 해양플랜트, 석유 시추시설 등 대형 해양 구조물은 물론 다리, 항만시설과 같은 철재 또는 시멘트 구조물의 방식 기술로 널리 적용되어 일반화된 기술이다. 그러나 국내에서는 아직까지도 초기 비용 상승 및 미약한 관련 기술 등의 이유로 대부분 방식도료를 사용하고 있는 실정이다. 그리하여 단기 수명에 따른 재시공 시 많은 환경오염을 유발하는 방식도료를 대체할 수 있는 아크 열용사법을 이용한 방식코팅 기술에 대한 관심과 수요가 점차 증가되고 있다. 그 일환으로 본 연구에서는 해양 구조물 강재의 방식을 위해 니켈계 용사재료를 이용하여 아크 열용사 코팅을 실시한 후 다양한 전기화학적 실험을 통해 내식성을 평가하고자 하였다. 아크 열용사 코팅은 구조용 강재 SS400강에 대하여 니켈합금 선재(1.6 Ø)를 사용하여 실시하였다. 용사 시 용사거리는 200 mm, 공기압력은 약 $7kg/cm^2$ 정도로 유지하면서 용사코팅을 실시하여 약 $200-250{\mu}m$ 두께로 코팅 층을 형성시켰다. 그리고 전기화학적 실험은 천연해수 속에서 자체 제작한 홀더(holder)를 이용하여 $3.14cm^2$의 용사코팅 층만을 노출시켜 실시하였다. 그리고 기준전극은 은/염화은 전극을, 대극은 백금전극을 사용하였다. 전기화학적 실험을 통해 부동태 특성 및 용사코팅 층 표면의 양극 용해반응 특성을 분석하기 위한 양극분극 실험은 OCP로부터 +3.0 V까지 실시하였다. 또한 부식전위 및 부식전류밀도 분석을 위한 타펠분석은 OCP를 기준으로 -0.25에서 +0.25 V까지 분극시켜 실시하였다. 그리고 주사전자현미경과 3D 분석을 통해 부식손상 표면을 관찰하였다. 그 결과 니켈합금으로 용사코팅된 강재의 내식성이 상당히 향상되었다.
표면의 전하 특성이 다른 두 가지 리그닌을 사용하여 이전 연구에서 제시된 간단한 방법인 용액상 화학적 중합을 이용하여 폴리피롤@리그닌(PPy@lignin) 및 폴리피롤@리그노설포네이트(PPy@lignosulfonate) 복합소재를 제조하였다. 폴리피롤은 두 가지 리그닌 표면에서 각각 성공적으로 중합되었으며, 얻어진 복합소재들은 주사전자현미경, 순환전압 전류법, 임피던스(impedance) 분석법 등을 이용하여 분석하였다. 이러한 결과들을 바탕으로, 리그닌의 종류가 달라도 복합재료들은 성공적으로 제조되는 것을 알 수 있었으며, 전기적 특성도 일정하게 유지되는 것으로 나타났다. 다만, 개별 리그닌의 표면 특성 차이로 나타나는 물성 차이가 존재함을 임피던스 분석으로 판단할 수 있었다. 나아가, 두 가지 복합소재들을 아가로즈(agarose) 젤(gel)에 투입하여 전도성 젤을 형성하고 이 젤들의 특성들을 역시 순환전압전류법으로 살펴보았으며, 전기전도도를 측정하여 제시하였다. 리그닌의 전기절연성에도 불구하고 전도성 젤이 전기전도도를 포함한 전기적 특성을 유지하는 것을 알 수 있었다. 이는 전도성 젤의 활용이 가능하다는 점을 의미한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.