• Title/Summary/Keyword: 전기품질

Search Result 1,626, Processing Time 0.032 seconds

The Chemical Properties of Doenjang Prepared by Monascus Koji (홍국첨가가 된장의 이화학적 특성에 미치는 영향)

  • Kim, Eun-Young;Rhyu, Mee-Ra
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.1114-1121
    • /
    • 2000
  • Monascus koji have been used as a natural food colorant and preservative in Asia countries for centuries. This study was investigated to the chemical properties of Doenjang prepared with Monascus koji. Four kinds of Doenjang were fermented with Aspergillus koji only and Aspergillus koji plus 10%, 20% and 30% Monascus koji of its amount, respectively, and the changes of characteristics were investigated during fermentation. All the Monascus koji substituted Doenjang showed lower protease activities than Aspergillus koji Doenjang over all periods of fermentation. No differences of amino nitrogen and free amino acids were found after 30 days of fermentation and reducing sugars and peptides were found during over all periods of fermentation in each other. The Monascus koji gave higher a-, L- and C-values and lower h-values than Aspergillus koji. Sensory profiles of color, flavor, taste and overall quality on the final products which fermented during 60 days, indicated that there were no differences each other. From these results Monascus koji suggested as 30% substitutes for Aspergillus koji in Doenjang preparation.

  • PDF

A Study on Non-uniformity Correction Method through Uniform Area Detection Using KOMPSAT-3 Side-Slider Image (사이드 슬리더 촬영 기반 KOMPSAT-3 위성 영상의 균일 영역 검출을 통한 비균일 보정 기법 연구 양식)

  • Kim, Hyun-ho;Seo, Doochun;Jung, JaeHeon;Kim, Yongwoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1013-1027
    • /
    • 2021
  • Images taken with KOMPSAT-3 have additional NIR and PAN bands, as well as RGB regions of the visible ray band, compared to imagestaken with a standard camera. Furthermore, electrical and optical properties must be considered because a wide radius area of approximately 17 km or more is photographed at an altitude of 685 km above the ground. In other words, the camera sensor of KOMPSAT-3 is distorted by each CCD pixel, characteristics of each band,sensitivity and time-dependent change, CCD geometry. In order to solve the distortion, correction of the sensors is essential. In this paper, we propose a method for detecting uniform regions in side-slider-based KOMPSAT-3 images using segment-based noise analysis. After detecting a uniform area with the corresponding algorithm, a correction table was created for each sensor to apply the non-uniformity correction algorithm, and satellite image correction was performed using the created correction table. As a result, the proposed method reduced the distortion of the satellite image,such as vertical noise, compared to the conventional method. The relative radiation accuracy index, which is an index based on mean square error (RA) and an index based on absolute error (RE), wasfound to have a comparative advantage of 0.3 percent and 0.15 percent, respectively, over the conventional method.

Agronomic Characteristics of A Promising Line Adaptable to Extremely Early Cultivation (벼 극조기 재배 적응 유망계통의 농업적 특성)

  • Lee, Jong-Hee;Oh, Seong-Hwan;Kim, Sang-Yeol;Cho, Jun-Hyeon;Lee, Ji-Yoon;Yeo, Un-Sang;Song, You-Chun;Choi, Kyoung-Jin;Park, Tae-Seon;Kang, Hang-Won;Lee, Hag-Dong
    • Korean Journal of Breeding Science
    • /
    • v.42 no.4
    • /
    • pp.407-412
    • /
    • 2010
  • Recently, peoples are greatly concerned with global temperature change because global warming can be a potential serious effect on agriculture production such as yield reduction and poor grain quality. On the other hand, it can bring some beneficial effects through twice cultivation of rice in temperate region. In order to overcome this situation, we developed extremely early-maturing rice 'Milyang255' which heading date was similar with 'Jinbuolbyeo'. Based on agronomic characteristics of 'Milyang255', it has very short stature as 65 cm of culm length and slightly lower spikelets number per panicle compared with that of 'Jinbuolbyeo'. However, the grain appearance, palatability and other items were better than those of 'Jinbuolbyeo' in panel test of cooked rice. The milled rice yield of 'Milyang255' is 3.94 MT/ha at the early transplanting. Especially, its grain filling rate was higher and faster than Jinbuolbyeo and the head rice ratio in milled rice was also higher. Thus, 'Milyang255' can efficiently reduce the growth duration of rice cultivation and also be useful material for research on twice cultivation of rice in Korea.

Design of an Integrated University Information Service Model Based on Block Chain (블록체인 기반의 대학 통합 정보서비스 실증 모델 설계)

  • Moon, Sang Guk;Kim, Min Sun;Kim, Hyun Joo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.2
    • /
    • pp.43-50
    • /
    • 2019
  • Block-chain enjoys technical advantages such as "robust security," owing to the structural characteristic that forgery is impossible, decentralization through sharing the ledger between participants, and the hyper-connectivity connecting Internet of Things, robots, and Artificial Intelligence. As a result, public organizations have highly positive attitudes toward the adoption of technology using block-chain, and the design of university information services is no exception. Universities are also considering the application of block-chain technology to foundations that implement various information services within a university. Through case studies of block-chain applications across various industries, this study designs an empirical model of an integrated information service platform that integrates information systems in a university. A basic road map of university information services is constructed based on block-chain technology, from planning to the actual service design stage. Furthermore, an actual empirical model of an integrated information service in a university is designed based on block-chain by applying this framework.

Growth of Tin Dioxide Nanostructures on Chemically Synthesized Graphene Nanosheets (화학적으로 합성된 그래핀 나노시트 위에서의 이산화주석 나노구조물의 성장)

  • Kim, Jong-IL;Kim, Ki-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.81-86
    • /
    • 2019
  • Metal oxide/graphene composites have been known as promising functional materials for advanced applications such as high sensitivity gas sensor, and high capacitive secondary battery. In this study, tin dioxide ($SnO_2$) nanostructures were grown on chemically synthesized graphene nanosheets using a two-zone horizontal furnace system. The large area graphene nanosheets were synthesized on Cu foil by thermal chemical vapor deposition system with the methane and hydrogen gas. Chemically synthesized graphene nanosheets were transferred on cleaned $SiO_2$(300 nm)/Si substrate using the PMMA. The $SnO_2$ nanostuctures were grown on graphene nanosheets at $424^{\circ}C$ under 3.1 Torr for 3 hours. Raman spectroscopy was used to estimate the quality of as-synthesized graphene nanosheets and to confirm the phase of as-grown $SnO_2$ nanostructures. The surface morphology of as-grown $SnO_2$ nanostructures on graphene nanosheets was characterized by field-emission scanning electron microscopy (FE-SEM). As the results, the synthesized graphene nanosheets are bi-layers graphene nanosheets, and as-grown tin oxide nanostructures exhibit tin dioxide phase. The morphology of $SnO_2$ nanostructures on graphene nanosheets exhibits complex nanostructures, whereas the surface morphology of $SnO_2$ nanostructures on $SiO_2$(300 nm)/Si substrate exhibits simply nano-dots. The complex nanostructures of $SnO_2$ on graphene nanosheets are attributed to functional groups on graphene surface.

Hybrid Energy Storage System with Emergency Power Function of Standardization Technology (비상전원 기능을 갖는 하이브리드 에너지저장시스템 표준화 기술)

  • Hong, Kyungjin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.187-192
    • /
    • 2019
  • Hybrid power storage system with emergency power function for demand management and power outage minimizes the investment cost in the building of buildings and factories requiring emergency power generation facilities, We propose a new business model by developing technology that can secure economical efficiency by reducing power cost at all times. Normally, system power is supplied to load through STS (Static Transfer Switch), and PCS is connected to system in parallel to perform demand management. In order to efficiently operate the electric power through demand forecasting, the EMS issues a charge / discharge command to the ESS as a PMS (Power Management System), and the PMS transmits the command to the PCS controller to operate the system. During the power outage, the STS is rapidly disengaged from the system, and the PCS becomes an independent power supply and can supply constant voltage / constant frequency power to the load side. Therefore, it is possible to secure reliability through verification of actual system linkage and independent operation performance of hybrid ESS, By enabling low-carbon green growth technology to operate in conjunction with an efficient grid, it is possible to improve irregular power quality and contribute to peak load by generating renewable energy through ESS linkage. In addition, the ESS is replacing the frequency follow-up reserve, which is currently under the charge of coal-fired power generation, and thus it is anticipated that the operation cost of the LNG generator with high fuel cost can be reduced.

A study on lighting angle for improvement of 360 degree video quality in metaverse (메타버스에서 360° 영상 품질향상을 위한 조명기 투사각연구)

  • Kim, Joon Ho;An, Kyong Sok;Choi, Seong Jhin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.1
    • /
    • pp.499-505
    • /
    • 2022
  • Recently, the metaverse has been receiving a lot of attention. Metaverse means a virtual space, and various events can be held in this space. In particular, 360-degree video, a format optimized for the metaverse space, is attracting attention. A 360-degree video image is created by stitching images taken with multiple cameras or lenses in all 360-degree directions. When shooting a 360-degree video, a variety of shooting equipment, including a shooting staff to take a picture of a subject in front of the camera, is displayed on the video. Therefore, when shooting a 360-degree video, you have to hide everything except the subject around the camera. There are several problems with this shooting method. Among them, lighting is the biggest problem. This is because it is very difficult to install a fixture that focuses on the subject from behind the camera as in conventional image shooting. This study is an experimental study to find the optimal angle for 360-degree images by adjusting the angle of indoor lighting. We propose a method to record 360-degree video without installing additional lighting. Based on the results of this study, it is expected that experiments will be conducted through more various shooting angles in the future, and furthermore, it is expected that it will be helpful when using 360-degree images in the metaverse space.

Effects of Dietary Hydrolyzed Yeast on Egg Production and Egg Quality during Late Phase of Laying Hens (산란후기 사료 내 가수분해 효모의 첨가 급여가 생산성과 계란 품질에 미치는 영향)

  • Chung, Jae Young;Kim, Kwan Eung;Lee, Hyung Ho;Yang, Hoi Chang;Kim, Eun Jib;An, Byoung Ki
    • Korean Journal of Poultry Science
    • /
    • v.48 no.4
    • /
    • pp.169-176
    • /
    • 2021
  • An experiment was conducted to investigate the effects of varying levels of hydrolyzed yeast on egg production and egg quality in aged laying randomly allotted to three dietary treatments such that egg production was similar in each treatment (6 replicates of 10 birds each). The layers were fed diets containing 0, 0.1, or 0.2% hydrolyzed yeast for eight weeks. No significant difference was observed in egg production during the first half of the experiment. Egg production and daily egg mass in groups fed diets containing hydrolyzed yeast were significantly higher (P<0.05) than those of the control groups during the second half of the experiment. Egg weight was not affected by the dietary treatment. Eggshell strength and thickness in groups fed diets containing hydrolyzed yeast were significantly higher than those of the control groups during the overall experimental period (P<0.05). Although no significant differences were observed in the Haugh units, yolk color in the group fed diets containing 0.1% hydrolyzed yeast was significantly higher than that in the control group (P<0.05). The mammillary layer thickness increased in a linear manner and significantly following treatment with dietary hydrolyzed yeast (P<0.05). Antibody titer against avian influenza virus in the group fed diets containing 0.2% hydrolyzed yeast was significantly higher (P<0.05) than that in the control group. In conclusion, dietary hydrolyzed yeast improved egg production and eggshell quality of laying hens in the late stages of production.

Characterization of few-layered reduced graphene oxide (rGO) for standardization (소수의 층을 갖는 환원 graphene oxide(rGO) 표준화를 위한 물성분석)

  • Ahn, Hae Jun;Huh, Seung Hun;Jee, Youngho;Lee, Byeong Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.32 no.6
    • /
    • pp.239-245
    • /
    • 2022
  • Reduced graphene oxide (rGO) has attracted many attention and applications due to its excellent electrochemical ability. Therefore, standardization of rGO through structural and thermal analysis facilitates quality improvement and management, enabling users to increase efficiency and reduce relevant costs. For rGO and graphene-related materials, it is very important to determine the number of layers and define the resulting difference in physical properties. In this study, 3~4 layers of rGO-1 and 9~10 layers of rGO-2 were obtained from graphene oxide (GO) through a hydrazine reduction process. For the prepared rGOs, X-ray diffraction (XRD) pattern obtained a diffraction peak at 2θ≈25° related to (002) reflection was used to calculate the layer numbers by determining interlayer distance and FWHM value. To reduce the angular uncertainty, XRD data analysis was performed with angle correction using standard reference materials for X-ray powder diffraction analysis. Precise interlayer distance and number of layers were determined using OriginLab and open-source XRD diffraction analysis programs using the angle-corrected diffraction data. TG-DSC thermal analysis was performed to further standardize the physical properties of rGO samples.

Compressional and Shear Wave Properties of Cement Grout Including Carbon Fiber (탄소섬유를 포함한 시멘트 그라우트의 압축파 및 전단파 특성)

  • Choi, Hyojun;Cho, Wanjei;Yune, Chanyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.15-24
    • /
    • 2021
  • In Korea, which is mostly mountainous, the proportion of tunnel and underground space development are increasing. Although the ground is reinforced by applying the ground improvement method during underground space development, accidents still occur frequently in Korea. In the grouting method, a representative ground reinforcement method, the effect was judged by comparing the total amount of injection material with the amount of injection material used during the actual grouting construction. However, it is difficult to determine whether the ground reinforcement is properly performed during construction or within the target ground. In order to solve this problem, it is necessary to study a new method for quality control during or after construction by measuring electrical resistivity after performing grouting by mixing carbon fiber, which is a conductive material, and microcement, which is a grout material. In this study, as a basic study, a cement specimen mix ed with 0%, 3%, 5%, 7% of carbon fiber was prepared to evaluate the performance of the grout material mixed with carbon fiber, which is a conductive material. The prepared specimens were wet curing for 3 days, 7 days, and 28 days under 99% humidity, and then compression wave velocity and shear wave velocity were measured. As a result of the compression wave velocity and shear wave velocity measurement, it showed a tendency to increase with the increase in the compounding ratio of carbon fibers and the number of days of age, and it was confirmed that the elastic modulus and shear modulus, which are the stiffness of the material, also increased.