DOI QR코드

DOI QR Code

Characterization of few-layered reduced graphene oxide (rGO) for standardization

소수의 층을 갖는 환원 graphene oxide(rGO) 표준화를 위한 물성분석

  • Ahn, Hae Jun (Ceramic Total Solution Center, Korea Institute of Ceramic Engineering and Technology (KICET)) ;
  • Huh, Seung Hun (Ceramic Total Solution Center, Korea Institute of Ceramic Engineering and Technology (KICET)) ;
  • Jee, Youngho (Department of Chemistry, Kyungpook National University) ;
  • Lee, Byeong Woo (Department of Ocean Advanced Materials Convergence Engineering, Korea Maritime and Ocean University)
  • 안해준 (세라믹종합솔루션센터, 한국세라믹기술원) ;
  • 허승헌 (세라믹종합솔루션센터, 한국세라믹기술원) ;
  • 지영호 (경북대학교 화학과) ;
  • 이병우 (한국해양대학교 해양신소재융합공학과)
  • Received : 2022.11.29
  • Accepted : 2022.12.14
  • Published : 2022.12.31

Abstract

Reduced graphene oxide (rGO) has attracted many attention and applications due to its excellent electrochemical ability. Therefore, standardization of rGO through structural and thermal analysis facilitates quality improvement and management, enabling users to increase efficiency and reduce relevant costs. For rGO and graphene-related materials, it is very important to determine the number of layers and define the resulting difference in physical properties. In this study, 3~4 layers of rGO-1 and 9~10 layers of rGO-2 were obtained from graphene oxide (GO) through a hydrazine reduction process. For the prepared rGOs, X-ray diffraction (XRD) pattern obtained a diffraction peak at 2θ≈25° related to (002) reflection was used to calculate the layer numbers by determining interlayer distance and FWHM value. To reduce the angular uncertainty, XRD data analysis was performed with angle correction using standard reference materials for X-ray powder diffraction analysis. Precise interlayer distance and number of layers were determined using OriginLab and open-source XRD diffraction analysis programs using the angle-corrected diffraction data. TG-DSC thermal analysis was performed to further standardize the physical properties of rGO samples.

환원그래핀옥사이드(rGO)는 우수한 전기 화학적 능력으로 많은 응용과 관심이 집중되고 있어, 이에 대한 구조 및 열분석을 통한 rGO의 표준화는 품질개선과 관리를 용이하게 하여 사용자가 효율성을 높이고 비용을 절감할 수 있도록 할 수 있다. rGO 및 그래핀 관련 재료의 경우 레이어 층수의 결정과 그에 따른 물성의 차이를 정의하는 것이 매우 중요하다. 본 연구에서는 하이드라진 환원공정을 통해 그래핀옥사이드(GO)로부터 3~4층의 rGO-1과 9~10층의 rGO-2를 얻었다. 이렇게 준비된 rGO에 대해 X선 회절(XRD) 패턴인 (002) 반사와 관련된 2θ≈25°에서 회절 피크를 얻어 층간 거리와 FWHM 값을 얻어 층수(layer number)를 결정하였다. 이때 XRD 데이터 분석은 회절분석용 표준물질들을 사용하여 각도 보정을 수행하였다. 정밀한 층간거리와 FWHM 값은, 각도 보정된 회절 데이터를 이용하여 OriginLab 및 오픈 소스 XRD 회절분석 프로그램들을 사용하여 결정하였다. rGO 샘플들의 추가적인 물성 표준화 분석을 위해 TG-DSC 열분석을 수행하였다.

Keywords

Acknowledgement

이 연구는 2020년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(No. 20016402).

References

  1. R.B. Onyancha, K.E. Ukhurebor, U.O. Aigbe, O.A. Osibote, H.S. Kusuma and H. Darmokoesoemo, "A methodical review on carbon-based nanomaterials in energy-related applications", Adsorpt. Sci. Technol. 2022 (2022) 1.
  2. M. Notarianni, J. Liu, K. Vernon and N. Motta, "Synthesis and applications of carbon nanomaterials for energy generation and storage", J. Nanotechnol. 7 (2016) 149.
  3. M.A.A. Faruque, M. Syduzzaman, J. Sarkar, K. Bilisik and M. Naebe, "A review on the production methods and applications of graphene-based materials", Nanomaterials 11 (2021) 2414. https://doi.org/10.3390/nano11092414
  4. W.S. Hummers Jr. and R.E. Offeman, "Preparation of graphitic oxide", J. Am. Chem. Soc. 80 (1958) 1339. https://doi.org/10.1021/ja01539a017
  5. K. Ojha, O. Anjaneyulu and A.K. Ganguli, "Graphene-based hybrid materials: synthetic approaches and properties", Curr. Sci. 107 (2014) 397.
  6. C.A. Clifford, E.H.M. Ferreira, T. Fujimoto, J. Herrmann, A.R. H. Walker, D. Koltsov, C. Punckt, L. Ren, G.J. Smallwood and A.J. Pollard, "The importance of international standards for the graphene community", Nat. Rev. Phys. 3 (2021) 233. https://doi.org/10.1038/s42254-021-00278-6
  7. S.H. Huh, "Physics and applications of graphene-experiments", InTech, 2011. chapter 5. 73.
  8. H.M. Ju, S.H. Huh, S.H. Choi and H.L. Lee, "Structures of thermally and chemically reduced graphene", Mater. Lett. 64 (2010) 357. https://doi.org/10.1016/j.matlet.2009.11.016
  9. P. Scherrer, "Bestimmung der grosse und der inneren struktur von kolloidteilchen mittels rontgenstrahlen", Nachr. Ges. Wissenschaft. Gottingen 3 (1918) 98.
  10. H.W. King and E.A. Payzant, "Error corrections for X-ray powder diffractometry", Can. Metall. Q. 40 (2001) 385. https://doi.org/10.1179/cmq.2001.40.3.385
  11. R.W. Cheary, A.A. Coelho and J.P. Cline, "Fundamental parameters line profile fitting in laboratory diffractometers", J. Res. Natl. Inst. Stand. Technol. 109 (2004) 1. https://doi.org/10.6028/jres.109.002
  12. X. Jiao, Y. Qiu, L. Zhangab and X. Zhang, "Comparison of the characteristic properties of reduced graphene oxides synthesized from natural graphites with different graphitization degrees", RSC Adv. 7 (2017) 52337. https://doi.org/10.1039/C7RA10809E
  13. A. Monshi, M.R. Foroughi and M.R. Monshi, "Modified scherrer equation to estimate more accurately nanocrystallite size using XRD", World J. Nano Sci. Engin. 2 (2012) 154. https://doi.org/10.4236/wjnse.2012.23020
  14. D.J. Lim, N.A. Marks and M.R. Rowles, "Universal Scherrer equation for graphene fragments", Carbon 162 (2020) 475. https://doi.org/10.1016/j.carbon.2020.02.064
  15. S. Park, J. An, J.R. Potts, A. Velamakanni, S. Murali and R.S. Ruoff, "Hydrazine-reduction of graphite- and graphene oxide", Carbon 49 (2011) 3019. https://doi.org/10.1016/j.carbon.2011.02.071
  16. J.C. Silva Filho, E.C. Venancio, S.C. Silva, H. Takiishi, L.G. Martinez and R.A. Antunes, "A thermal method for obtention of 2 to 3 reduced graphene oxide layers from graphene oxide", SN Appl. Sci. 2 (2020) 1450. https://doi.org/10.1007/s42452-020-03241-9