• Title/Summary/Keyword: 전기추진비행기

Search Result 5, Processing Time 0.016 seconds

Prediction of Battery Performance of Electric Propulsion Lightweight Airplane for Flight Profiles (비행프로파일에 대한 전기추진 경량비행기의 배터리 성능 예측)

  • Kim, Hyun-Gi;Kim, Sungchan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.5
    • /
    • pp.15-21
    • /
    • 2021
  • Electrically powered airplanes can reduce CO2 emissions from fossil fuel use and reduce airplane costs in the long run through efficient energy use. For this reason, advanced aviation countries such as the United States and the European Union are leading the development of innovative technologies to implement the full-electric airplane in the future. Currently, the research and development to convert existing two-seater engine airplanes to electric-powered airplanes are underway domestically. The airplane converted to electric propulsion is the KLA-100, which aims to carry out a 30-minute flight test with a battery pack installed using the engine mounting space and copilot space. The lithium-ion battery installed on the airplane converted to electric propulsion was designed with a specific power of 150Wh/kg, weight of 200kg, and a C-rate 3~4. This study confirmed the possibility of a 30-minute flight with a designed battery pack before conducting a flight test of a modified electrically propelled airplane. The battery performance was verified by dividing the 30-minute flight profile into start/run stage, take-off stage, climbing stage, cruise stage, descending stage, and landing/run stage. The final target of the 30-minute flight was evaluated by calculating the battery capacity required for each stage. Furthermore, the flight performance of the electrically propelled airplane was determined by calculating the flight availability time and navigation distance according to the flight speed.

A Study on Power System for the EAV2 Electric Propulsion Vehicle (EAV2 전기추진비행기용 동력시스템에 관한 연구)

  • Lee, Bo-Hwa;Park, Poo-Min;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.816-819
    • /
    • 2010
  • A study on the required propulsion powers at the EAV2 electric propulsion vehicle using power system such as solar cell, fuel cell and secondary cell is conducted, through which the scenario about available supply power is discussed at the optimum propulsion system weight on the specified flight envelope. In the result, it is noticed that propulsion system weight is 7.06kg and fuelcell 500W and secondary cell 100W are available to flight for glider-type electric vehicle with 6m length, 0.35m width.

  • PDF

The Status and outlook of Propulsion System for Electric Powered Personal Air Vehicles (전기 동력 Personal Air Vehicle의 추진시스템 현황 및 전망)

  • Lee, Sun-Kyoung;Huh, Hwan-Il
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.183-186
    • /
    • 2011
  • In this paper, we present some results of power analyses, and weight estimation on electric propulsion systems for Personal Air Vehicles(PAV) applications. When hybrid electric propulsion is adopted, its power performance using fuel cells and batteries is inferior to that of internal combustion engines for 1,000 kg PAV. However, hybrid electric propulsion systems may replace IC engines when energy density and power density is over $0.75kW{\cdot}hr/kg$and 2.5 kW/kg, respectively.

  • PDF

Ground Integrated Test for the Hybrid Electric Propulsion System (하이브리드 전기추진 시스템 지상통합시험)

  • Lee, Bo-Hwa;Kim, Young-Mun;Park, Poo-Min;Kim, Keun-Bae;Cha, Bong-Jun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.772-776
    • /
    • 2011
  • EAV-2, which has a solar cell, fuel cell and battery as its power sources, is under development by KARI. Electric power sources are selected through voltage matching without power converter and controller and tested. The ground integrated test for integrated system is performed during 5 hr. it is confirmed that battery's power response is faster than other power sources at starting and transient condition, fuel cell and solar cell are a major electrical power during cruise condition. It is revealed that the used energy portions of fuel cell, solar cell and battery are 68%, 29%, 2.5% respectively.

  • PDF

한국형 고속전철의 신경망, 제어네트웍(TCN)

  • 박재현
    • 전기의세계
    • /
    • v.53 no.6
    • /
    • pp.37-42
    • /
    • 2004
  • 고속전철은 비행기가 활주로에서 이륙하는 속도를 능가하는 시속 300km이상의 고속으로 운영되는 열차로서 고도의 제어기술이 총동원되는 기술의 결합체이다. 고속전철내의 전자 장치들은 단지 추진이나 제동의 기능뿐만 아니라 차량의 상태에 대한 모니터 링, 온라인 진단, 여행자 정보서비스 및 테스트용 백업 등 다양한 기능을 수행하게 되어 있으며, 이러한 기능들을 보다 안전하고도 효율적으로 수행하기 위하여 분산제어방식으로 구축되고 있다. 특히 20량까지 연결하여 운영하는 고속전철의 특성상 각 차량에 고루 분산되어 있는 분산제어시스템을 효과적으로 지원하기 위한 제어네트웍은 고속전철 제어시스템의 중추적인 역할을 담당하고 있다고 하겠다.(중략)

  • PDF