• Title/Summary/Keyword: 전과정목록분석

Search Result 30, Processing Time 0.024 seconds

A Study on the Calculation Method of the Elastomeric Bearing Life Cycle Inventory (LCI) Database to Improve Reliability of Evaluation of Environmental Load of Bridges (교량의 환경부하평가 신뢰성 향상을 위한 교량용 탄성받침 전과정목록 산정방법에 관한 연구)

  • Wie, Deahyung;Kim, Youngchun;Kwak, Inho;Hwang, Yongwoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.681-691
    • /
    • 2017
  • In this research, life cycle inventory database (LCI DB) was developed for elastomeric bearing employing life cycle assessment (LCA) methodology additionally the reliability improvement rate in the evaluation of the environmental load of the bridge was analyzed. As are result of impact assessment by 6 major impact categories, production of elastomeric bearing puts on environmental impact in the order of resource depletion, global warming, photochemical oxidant creation. and among a wide variety of input, steel plates contributes in most of the impact categories. As a result of applying the elastomeric bearing LCI database constructed in this study, the environmental loads increased by 0.53% on average, and the cut-off based on the cost of input materials increased by 11.36%. It is anticipated that it will be possible to improve the credibility and to provide data based on current production technology, such as estimating GHG emissions and evaluating environmental load, by constructing elastomeric bearing LCI DB.

Comparisons of Environmental Characteristics between Diesel and Dimethyl Ether as Fuels (디젤과 디메틸에테르의 연료로서의 환경적 특성 비교)

  • Han, Soon-Rye;Chung, Yon-Soo
    • Clean Technology
    • /
    • v.14 no.2
    • /
    • pp.144-151
    • /
    • 2008
  • Life cycle assessment was carried out to evaluate the environmental values of dimethylas a diesel alternative fuel with the assumption of dimethyl ether production from natural gas via synthesis gas. The whole life cycles from raw material acquisitions to the final usages of diesel and dimethyl ether were involved in the assessment. Inventory analysis showed that the most significant environmental impacts came from resource depletions and air emissions. Impact assessment revealed that dimethyl ether was environmentally better in the aspect of human health and ecosystem quality but worse in resource depletions compared with diesel fuel. Suggestions for environmental improvement of dimethyl ether as a diesel alternative fuel were prepared based on the assessment results.

  • PDF

Design Approach of Concrete Structures Considering the Targeted CO2 Reduction (목표 탄소배출량 저감을 고려한 콘크리트 구조물의 설계 절차)

  • Jung, Yeon-Back;Yang, Keun-Hyeok
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.115-121
    • /
    • 2015
  • The objective of this study is to present the design approach of low $CO_2$ concrete structures for reduction of $CO_2$ emissions. The design approach was implemented considering the system boundary for each processing presented in the ISO 13315-2. As for life-cycle inventory(LCI) for $CO_2$ assessment of concrete structures, data provided from domestic LCI DB was used. Based on the process presented in this study, case studies on the life-cycle $CO_2$ assessment of shear wall concrete structure was conducted. As substitution level of GGBS is 25%, the amount of $CO_2$ emissions and $CO_2$ uptake by concrete carbonation was decreased in the material, demolition and crushing, and transport phase. The amount of $CO_2$ emissions of column and total member was decreased by 26% and 22% respectively, compared to that of OPC.

Life Cycle Assessment on the End-of-Life Vehicle Treatment System in Korea (국내 폐자동차 처리시스템에 대한 전과정평가)

  • Hong, Seok-Jin;Jeong, Kee-Mo;Hong, John-Hee;Yun, Ju-Ho;Hur, Tak
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.105-112
    • /
    • 2005
  • This study aims at evaluating the environmental impacts stemmed from the End-of-Life Vehicle(ELV) treatment systems in Korea, using Life Cycle Assessment(LCA) method. In this study, both environmental burden from the ELV dismantling process & recycling processes and environmental benefit which were derived from the avoided environmental impacts by substituting recycled materials for virgin materials were considered. First of all, the key issues which were defined as the environmental aspects that account for more than $1\%$ out of the total environmental impacts were identified from the Life Cycle Impact Assessment(LCIA). $CO_2$, crude oil, natural gas, coal, etc. were found out to be the key issue parameters. From the LCI Analysis and LCIA studies, it was shown that the significant environmental aspects were related with the recycling process of ferro scrap, the shredding process of compressed car bodies and the dismantling process of end-of-life engines. In particular, the recycling process of ferro scrap has the most significant effects on the environmental impacts of the ELV treatment systems. Based on these results, it is recommended to improve the recycling process of ferro scrap in order to make the ELV treatment systems more environmentally sound.

Evaluation of Greenhouse Gas Emission for Wooden House Using Simplified Life Cycle Assessment Tool (목조주택 온실가스 배출량 평가를 위한 간이 전과정평가 툴 개발)

  • Chang, Yoon-Seong;Kim, Sejong;Son, Whi-Lim;Jung, Soon-Chul;Shin, Hyun-Kyeong;Shim, Kug-Bo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.650-660
    • /
    • 2017
  • In this study, simplified LCA (life cycle assessment) tool was developed to increase accessibility and availability on LCA timber construction. The result of simplified LCA was compared with commercial program on LCA (Simapro.7) to verify its availability. As a result of evaluating environmental impacts with the Life Cycle Inventory of all processes, gap between LCA and simplified LCA tools of timber construction was about 1%. Therefore, the simplified LCA tool could analyse greenhouse gas emissions of timber construction and to expand number of data set through improved conveniency of users for developing database of timber construction in Korea. The reduction effects of greenhouse gas emissions of timber construction was about 53% of total emission offset up to construction phase. The results of this study would support decision making process to expand to timber construction policy to showcase environmental friendliness of timber construction. It was expected to contribute to response to the New climate regime in forestry.

Assessment of Carbon Emission for Quantification of Environmental Load on Structural Glued Laminated Timber in Korea (국산 구조용 집성재의 환경부하 정량화를 위한 온실가스 배출량 분석)

  • Chang, Yoon-Seong;Kim, Sejong;Son, Whi-Lim;Lee, Sang-Joon;Shim, Kug-Bo;Yeo, Hwanmyeong;Kim, Kwang-Mo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.3
    • /
    • pp.449-456
    • /
    • 2016
  • This study was aimed to quantify the amount of carbon dioxide emissions and to suggest suitable plans which consider the carbon emission reduction in the manufacturing process of the domestic structural glued laminated timber. Field investigation on two glued laminated timber manufacturers was conducted to find out material flow input values such as raw materials, transportation, manufacturing process, and energy consumption during manufacturing process. Based on the collected data and the relevant literatures about life cycle inventory (LCI), the amount of carbon dioxide emission per unit volume was quantified. Results show that the carbon dioxide emissions for sawing, drying and laminating process are 31.0, 109.0, 94.2 kg $CO_2eq./m^3$, respectively. These results show 13% lesser amount of total carbon dioxide emissions compared with the imported glued laminated timber in Korea. Furthermore, it was decreased about 37% when the fossil fuel would be replaced with biomass fuel in drying process. Findings from this study is effectively used as the basic data on the life cycle assessment of wooden building.

A Study of Life Cycle Assessment in Shipyards Layout using a Discrete Event Simulation Engine (이산 사건 시뮬레이션 엔진을 이용한 조선소 레이아웃의 전과정평가 적용 연구)

  • Lee, Dong-Kun;Nam, Seung-Hoon;Shin, Jong-Gye
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • In recent days, global shipbuilding companies have been showing great interest in eco-friendly ship products and trying to reduce environmental pollution - harmful gas and dust in shipbuilding process. Following this trend, Life Cycle Assessment (LCA) was carried out to an application of shipyards layout. LCA is a technique used to assess environmental impacts during the life cycle of products and systems. Until now, LCA has been used through ISO 14040 in somewhat limited industries, such as Building Life Cycle Assessment. Thus, this study analyzes the shipyard layout planning framework and builds life cycle inventory along with the simulation model structure to evaluate environmental impacts.

A Study on Life-Cycle Environmental Impact of Synthetic Resin Formwork (합성수지 거푸집의 전과정 환경영향평가에 관한 연구)

  • Nam, Kyung-Yong;Yang, Keun-Hyeok;Lee, Young-Do
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.3
    • /
    • pp.245-252
    • /
    • 2020
  • Synthetic resin formwork is made of lightweight high-density polyethylene(HDPE). This study used a process flow chart that satisfies the system boundary (such as Cradle-to- Product shipmen ) required by ISO FDIS 13352 to evaluate the entire process of synthetic resin foam using. The entire life cycle inventory (LCI) database calculated from input energy sources, materials used, transportation methods, and manufacturing processes at the system boundary was analyzed. Based on the environmental impact assessment index methodology of the Ministry of Environment from the LCI data analysis of synthetic resin formwork, the environmental impact assessment was carried out through classification, normalization, characterization, and weighting process. The experimental results are as follows the amount of CO2 (carbon) emission considering the number of conversions was about 32% lower than that of the Euroform. This shows that the use of synthetic resin formwork reduces material production by half compared to Euroform and reduces CO2 (carbon) emissions.

LCA (Life Cycle Assessment) for Evaluating Carbon Emission from Conventional Rice Cultivation System: Comparison of Top-down and Bottom-up Methodology (관행농 쌀 생산체계의 탄소배출량 평가를 위한 전과정평가: top-down 방식의 국가평균값과 bottom-up 방식의 사례분석값 비교)

  • Ryu, Jong-Hee;Jung, Soon Chul;Kim, Gun-Yeob;Lee, Jong-Sik;Kim, Kye-Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.6
    • /
    • pp.1143-1152
    • /
    • 2012
  • We established a top-down methodology to estimate carbon footprint as national mean value (reference) with the statistical data on agri-livestock incomes in 2007. We also established LCI (life cycle inventory) DB by a bottom-up methodology with the data obtained from interview with farmers from 4 large-scale farms at Gunsan, Jeollabuk-do province to estimate carbon footprint in 2011. This study was carried out to compare top-down methodology and bottom-up methodology in performing LCA (life cycle assessment) to analyze the difference in GHGs (greenhouse gases) emission and carbon footprint under conventional rice cultivation system. Results of LCI analysis showed that most of $CO_2$ was emitted during fertilizer production and rice cultivation, whereas $CH_4$ and $N_2O$ were mostly emitted during rice cultivation. The carbon footprints on conventional rice production system were 2.39E+00 kg $CO_2$-eq. $kg^{-1}$ by top-down methodology, whereas 1.04E+00 kg $CO_2$-eq. $kg^{-1}$ by bottom-up methodology. The amount of agro-materials input during the entire rice cultivation for the two methodologies was similar. The amount of agro-materials input for the bottom-up methodology was sometimes greater than that for top-down methodology. While carbon footprint by the bottom-up methodology was smaller than that by the top-down methodology due to higher yield per cropping season by the bottom-up methodology. Under the conventional rice production system, fertilizer production showed the highest contribution to the environmental impacts on most categories except GWP (global warming potential) category. Rice cultivation was the highest contribution to the environmental impacts on GWP category under the conventional rice production system. The main factors of carbon footprints under the conventional rice production system were $CH_4$ emission from rice paddy field, the amount of fertilizer input and rice yield. Results of this study will be used for establishing baseline data for estimating carbon footprint from 'low carbon certification pilot project' as well as for developing farming methods of reducing $CO_2$ emission from rice paddy fields.

Life Cycle Assessment of Part Reuse/Recycling in the End-of-Life Stage of Personal Computers (부품 재사용 여부에 따른 폐컴퓨터에 대한 전과정평가(LCA))

  • Lim, Hyeong-Soon;Yang, Yun-Hee;Song, Jun-Il;Lee, Kun-Mo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.5
    • /
    • pp.494-500
    • /
    • 2006
  • Life Cycle Assessment(LCA) is an environmental assessment tool for evaluating environmental burdens associated with products, processes and activities from the raw material acquisition stage to the end-of-life stage. End-of-life stage as well as other processes requires a reliant database in order to increase the confidence in the LCA results. In this study, the flow of Personal Computer(as PC) in the end-of-life stage was examined and the database of two scenarios has been established, i.e. one is part reuse and the other is no part reuse, in the end-of-life phase of PC. Also, key environmental issues were identified by carrying out LCA on a PC in the end-of-life phase for eight environmental impact categories. The 'ozone layer depletion' contributes the highest environmental impact due to generation of $Cl_2$ gas during the incineration of waste plastics. In addition, the scenario 1(part reuse) is more environmentally sound than the scenario 2(no part reuse) when comparing two scenarios.