• 제목/요약/키워드: 적응 학습 제어

검색결과 169건 처리시간 0.025초

수직다물체시스템의 간접적응형 분산학습제어에 관한 연구 (A Study on Indirect Adaptive Decentralized Learning Control of the Vertical Multiple Dynamic System)

  • 이수철;박석순;이재원
    • 한국정밀공학회지
    • /
    • 제22권4호
    • /
    • pp.92-98
    • /
    • 2005
  • The learning control develops controllers that learn to improve their performance at executing a given task, based on experience performing this specific task. In a previous work, the authors presented an iterative precision of linear decentralized learning control based on p-integrated learning method for the vertical dynamic multiple systems. This paper develops an indirect decentralized teaming control based on adaptive control method. The original motivation of the teaming control field was loaming in robots doing repetitive tasks such as on an assembly line. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. Some techniques will show up in the numerical simulation for vertical dynamic robot. The methods of learning system are shown up for the iterative precision of each link.

영상복원을 위한 유전자기반 시스템 모델링 : 러프-퍼지엔트로피 (System Modeling based on Genetic Algorithms for Image Restoration : Rough-Fuzzy Entropy)

  • 박인규;황상문;진달복
    • 감성과학
    • /
    • 제1권2호
    • /
    • pp.93-103
    • /
    • 1998
  • 효율적이고 체계적인 퍼지제어를 위해 조작자의 제어동작을 모델링하거나 공정을 모델링하는 기법이 필요하고, 또한 퍼지 추론시에 조건부의 기여도(contribution factor)의 결정과 동작부의 제어량의 결정이 추론의 결과에 중요하다. 본 논문에서는 추론시 조건부의 기여도와 동작부의 세어량이 퍼지 엔트로피의 개념하에서 수행되는 적응 퍼지 추론시스템을 제시한다. 제시된 시스템은 전방향 신경회로망의 토대위에서 구현되며 주건부의 기여도가 퍼지 엔트로피에 의하여 구해지고, 동작부의 제어량은 확장된 퍼지 엔트로피에 의하여 구해진다. 이를 위한 학습 알고리즘으로는 역전파 알고리즘을 이용하여 조건부의 파라미터의 동정을 하고 동작부 파라미터의 동정에는 국부해에 보다 강인한 유전자 알고리즘을 이용하다. 이러한 모델링 기법을 임펄스 잡음과 가우시안 잡음이 첨가된 영상에 적용하여 본 결과, 영상복원시에 발생되는 여러 가지의 경우에 대한 적응성이 보다 양호하게 유지되었고, 전체영상의 20%의 데이터만으로도 객관적 화질에 있어서 기존의 추론 방법에 비해 향상을 보였다.

  • PDF

LwF에서 망각현상 개선을 위한 적응적 가중치 제어 방법 (Adaptive Weight Control for Improvement of Catastropic Forgetting in LwF)

  • 박성현;강석훈
    • 한국정보통신학회논문지
    • /
    • 제26권1호
    • /
    • pp.15-23
    • /
    • 2022
  • 지속적 학습 환경을 위한 학습 방법 중 LwF(Learning without Forgetting)는 정규화 강도가 고정되어 있어 다양한 데이터가 들어오는 환경에서 성능이 하락 할 수 있다. 본 논문에서는 학습하려는 데이터의 특징을 파악하여 가중치를 가변적으로 설정할 수 있는 방법을 제안하고, 실험으로 성능을 검증한다. 상관 관계와 복잡도를 이용하여 적응적으로 가중치를 적용하도록 하였다. 평가를 위해 다양한 데이터를 가진 태스크가 들어오는 시나리오를 구성하여 실험을 진행하였고, 실험 결과 새로운 태스크의 정확도가 최대 5%, 이전 태스크의 정확도가 최대 11% 상승하였다. 또한, 본 논문에서 제안한 알고리즘으로 구한 적응적 가중치 값은, 각 실험 시나리오마다 반복적 실험에 의해, 수동으로 계산한 최적 가중치 값에 접근한 것을 알 수 있었다. 상관 계수 값은 0.739 이었고, 전체적으로 평균 태스크 정확도가 상승하였다. 본 논문의 방법은, 새로운 태스크를 학습할 때마다 적절한 람다 값을 적응적으로 설정하였으며, 본 논문에서 제시한 여러 가지 시나리오에서 최적의 결과값을 도출하고 있다는 것을 알 수 있다.

화자적응화 연속음성 인식 시스템의 구현에 관한 연구 (A Study on Realization of Continuous Speech Recognition System of Speaker Adaptation)

  • 김상범;김수훈;허강인;고시영
    • 한국음향학회지
    • /
    • 제18권3호
    • /
    • pp.10-16
    • /
    • 1999
  • 본 연구에서는 소량의 음성 데이터만으로 적응화가 가능한 MAPE(최대사후확률추정)을 이용한 연속음성 인식시스템 개발에 대해 연구하였다. 음절단위 모델을 구축한 후 적응화 하고자 하는 화자의 데이터를 연결학습법과 Viterbi 알고리즘으로 음절단위의 추출을 자동화 한 후 MAPE로 적응화하였다. 자동차 제어문에 대해 화자 적응화한 경우의 인식률(O(n)DP인 경우)은 77.18%로 적응화 전의 결과보다 약 6%향상되었다.

  • PDF

신경망 자율 적응제어를 이용한 발전기의 전압제어 (Voltage Control of Generator using Neural Network Self Adaptative Control)

  • 박왈서;오훈;유석주;라성훈
    • 조명전기설비학회논문지
    • /
    • 제23권2호
    • /
    • pp.103-107
    • /
    • 2009
  • PI제어기는 발전기의 전압제어 시스템에 널리 쓰이고 있다. 하지만 발전 시스템의 특성이 연속적으로 변화할 때, 새로운 PI매개변수를 결정하는 것이 쉽지 않다. 이를 해결하기 위하여 본 논문에서는 발전기의 전압제어에 신경망자율 적응 제어를 이용하는 제어 방법을 제안하였다. 전압제어 시스템의 적절한 연속적인 궤환 제어 이득은 델타학습 규칙에 의해서 결정된다. 제안된 제어 방법의 기능은 직류 발전기 전압제어 실험에 의해 확인하였다.

에너지 센서 네트워크를 위한 무선 스마트 플러그 설계 (Design of Wireless Smart Plug for Energy Sensor Network)

  • 김원호
    • 한국위성정보통신학회논문지
    • /
    • 제6권2호
    • /
    • pp.131-135
    • /
    • 2011
  • 본 논문에서는 에너지 센서 네트워크 적용을 위한 AC 전력센싱 기능과 지능형 대기전력 차단제어 기능을 가진 무선 스마트 플러그 설계와 적응식 대기전력 차단제어 알고리즘을 제안하고 구현하였다. 적응식 대기전력 차단제어 알고리즘은 사무기기나 가전기기마다 상이한 대기전력 문턱치를 학습기능에 의해 자동 감지하고, 적응 설정되게 함으로서 사용자의 편이성과 신뢰성 높은 대기전력 차단제어 기능을 제공하여 에너지소비 절감 효과를 극대화 할 수 있도록 하였다. 구현된 시제품의 기능을 검증한 결과, 설계 요구기능을 모두 만족하였으며 대기전력 소비를 절감할 수 있는 지능형 전력센서로서 실용성이 있음을 확인하였다.

CMAC을 이용한 구조물의 동적응답 예측 (Prediction of Dynamic Response of Structures Using CMAC)

  • 김동현;김현택;이인원
    • 한국강구조학회 논문집
    • /
    • 제12권5호통권48호
    • /
    • pp.605-615
    • /
    • 2000
  • CMAC을 이용하여 구조물의 지진응답을 예측하였다. CMAC은 매우 빠른 학습성능을 가지고 있는 것이 장점이며 구조물의 동적응답을 학습함에 있어서도 수 초 이내에 만족할 만한 정도로 학습을 끝낸다. 따라서 실시간 학습을 필요로 하는 분야에 매우 효과적으로 사용될 수 있다. 실시간 응답학습은 장기거동 등으로 역학적 특성이 변하거나 손상을 입은 구조물의 적응제어 등이 있다. 수치해석에서는 3층 전단건물의 지진응답을 CMAC을 통하여 학습하였으며 학습은 매우 빠르게 완수 되었다. 결론적으로 CMAC은 구조물의 진동제어 분야에서 매우 효과적으로 사용될 수 있는 인공지능의 하나이다.

  • PDF

비선형 백스테핑 방식에 의한 차량 동력학의 적응-학습제어 (Adaptive-learning control of vehicle dynamics using nonlinear backstepping technique)

  • 이현배;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.636-639
    • /
    • 1997
  • In this paper, a dynamic control scheme is proposed which not only compensates for the lateral dynamics and longitudinal dynamics but also deal with the yaw motion dynamics. Using the dynamic control technique, adaptive and learning algorithm together, the proposed controller is not only robust to disturbance and parameter uncertainties but also can learn the inverse dynamics model in steady state. Based on the proposed dynamic control scheme, a dynamic vehicle simulator is contructed to design and test various control techniques for 4-wheel steering vehicles.

  • PDF

Teleoperating system의 적응학습제어에 관한 연구 (Study of adaptive learning control for teleoperating system)

  • 최병현;국태용;최혁렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.168-172
    • /
    • 1996
  • In master-slave teleoperating system, it is important that the system has good maneuverability. In this paper, it is addressed an adaptive learning control method applicable to the master-slave system. This control scheme has the ability to estimate uncertain dynamic parameters included intrinsically in the system and to achieve the desired performance without the nasty matrix operation. The proposed method is applied to a master-slave teleoperating system composed of two SCARA robots and verified experimentally.

  • PDF

신경망필터를 이용한 음질향상 (Speech Enhancement using the Neural Network Filter)

  • 김종우;공성곤
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.102-105
    • /
    • 2000
  • 본 논문에서는 잡음환경에서의 음성신호복원(Speech Enhancement) 시스템 구현을 목적으로 한다 이를 위한 적응필터로서 LMS(Least Mean Square)알고리즘 FIR필터를 제안한다. 또 정밀 필터로서 신경망 필터를 제안한다. 잡음환경에서의 음성신호 복원 시스템은 잡음에 의해 왜곡된 음성신호에서 잡음성분만을 제거함으로써 음성신호를 복원하는 시스템이다. 일반적으로 잡음은 시변특성과, 비선형적인 전달특성을 갖는다. 그러므로 파라미터가 고정된 필터로는 제어하기가 힘들다. 이러한 이유로 본 논문에서는 LMS알고리즘 적응필터를 적용한다. 신경망 필터는 오차 역전파 학습 알고리즘에 의해 오차를 최소화하는 방향으로 필터의 파라미터를 수정한다. 제안한 필터로 잡음환경에서의 음성신호복원 시스템을 구성하고, 실험을 통해 필터의 성능을 확인한다.

  • PDF