Abstract
In this paper, we have studied Continuous Speech Recognition System of Speaker Adaptation using MAPE (Maximum A Posteriori Probability Estimation) which can adapt any small amount of adaptation speech data. Speaker adaptation is performed by the method of MAPB after Concatenation training which is making sentence unit HMM linked by syllable unit HMM and Viterbi segmentation classifies speech data to be adaptation into segmentation of syllable unit data automatically without hand labelling. For car control speech the recognition rates of adaptation of HMM was 77.18% which is approximately 6% improvement over that of unadapted HMM.(in case of O(n)DP)
본 연구에서는 소량의 음성 데이터만으로 적응화가 가능한 MAPE(최대사후확률추정)을 이용한 연속음성 인식시스템 개발에 대해 연구하였다. 음절단위 모델을 구축한 후 적응화 하고자 하는 화자의 데이터를 연결학습법과 Viterbi 알고리즘으로 음절단위의 추출을 자동화 한 후 MAPE로 적응화하였다. 자동차 제어문에 대해 화자 적응화한 경우의 인식률(O(n)DP인 경우)은 77.18%로 적응화 전의 결과보다 약 6%향상되었다.