• Title/Summary/Keyword: 적응형 학습회로

Search Result 38, Processing Time 0.022 seconds

Traffic Object Tracking Based on an Adaptive Fusion Framework for Discriminative Attributes (차별적인 영상특징들에 적응 가능한 융합구조에 의한 도로상의 물체추적)

  • Kim Sam-Yong;Oh Se-Young
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.5 s.311
    • /
    • pp.1-9
    • /
    • 2006
  • Because most applications of vision-based object tracking demonstrate satisfactory operations only under very constrained environments that have simplifying assumptions or specific visual attributes, these approaches can't track target objects for the highly variable, unstructured, and dynamic environments like a traffic scene. An adaptive fusion framework is essential that takes advantage of the richness of visual information such as color, appearance shape and so on, especially at cluttered and dynamically changing scenes with partial occlusion[1]. This paper develops a particle filter based adaptive fusion framework and improves the robustness and adaptation of this framework by adding a new distinctive visual attribute, an image feature descriptor using SIFT (Scale Invariant Feature Transform)[2] and adding an automatic teaming scheme of the SIFT feature library according to viewpoint, illumination, and background change. The proposed algorithm is applied to track various traffic objects like vehicles, pedestrians, and bikes in a driver assistance system as an important component of the Intelligent Transportation System.

Reinforcement Learning with Clustering for Function Approximation and Rule Extraction (함수근사와 규칙추출을 위한 클러스터링을 이용한 강화학습)

  • 이영아;홍석미;정태충
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.11
    • /
    • pp.1054-1061
    • /
    • 2003
  • Q-Learning, a representative algorithm of reinforcement learning, experiences repeatedly until estimation values about all state-action pairs of state space converge and achieve optimal policies. When the state space is high dimensional or continuous, complex reinforcement learning tasks involve very large state space and suffer from storing all individual state values in a single table. We introduce Q-Map that is new function approximation method to get classified policies. As an agent learns on-line, Q-Map groups states of similar situations and adapts to new experiences repeatedly. State-action pairs necessary for fine control are treated in the form of rule. As a result of experiment in maze environment and mountain car problem, we can achieve classified knowledge and extract easily rules from Q-Map

A Study on the Pattern Recognition based Distance Protective Relaying Scheme in Power System (전력계통의 패턴인식형 거리계전기법에 관한 연구)

  • 이복구;윤석무;박철원;신명철
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.8 no.2
    • /
    • pp.9-20
    • /
    • 1998
  • In this paper, a new distance relaying scheme is proposed. Artificial neural networks are applied to the distance relaying system composed of pattern recognition based. The proposed distance relaying scheme has two blocks of pattern recognition stages to estimate the fundamental frequency and to classify the fault types. In the first block, a filtering method using neural networks called a neural networks mapping filter(NMF) is presented to efficiently extract the features. And in the sec'ond block, the estimator called neural networks fault pattern estimator(NFPE) is also presented to classify the fault types by the extracted effective features obtained from NMF. Each block of these applied schemes is trained by back-propagation algorithm of multilayer perceptron and show the fast and accurate pattern recognition by ability of multilayer neural networks. The test result of this approach are obtained the good performance from the fault transient wave signals of EMTP(e1ectromagnetic transients program) in the various fault conditions of power systems.

  • PDF

Battery State-of-Charge Estimation Using ANN and ANFIS for Photovoltaic System

  • Cho, Tae-Hyun;Hwang, Hye-Rin;Lee, Jong-Hyun;Lee, In-Soo
    • The Journal of Korean Institute of Information Technology
    • /
    • v.18 no.5
    • /
    • pp.55-64
    • /
    • 2020
  • Estimating the state of charge (SOC) of a battery is essential for increasing the stability and reliability of a photovoltaic system. In this study, battery SOC estimation methods were proposed using artificial neural networks (ANNs) with gradient descent (GD), Levenberg-Marquardt (LM), and scaled conjugate gradient (SCG), and an adaptive neuro-fuzzy inference system (ANFIS). The charge start voltage and the integrated charge current were used as input data and the SOC was used as output data. Four models (ANN-GD, ANN-LM, ANN-SCG, and ANFIS) were implemented for battery SOC estimation and compared using MATLAB. The experimental results revealed that battery SOC estimation using the ANFIS model had both the highest accuracy and highest convergence speed.

Fuzzy Neural System Modeling using Fuzzy Entropy (퍼지 엔트로피를 이용한 퍼지 뉴럴 시스템 모델링)

  • 박인규
    • Journal of Korea Multimedia Society
    • /
    • v.3 no.2
    • /
    • pp.201-208
    • /
    • 2000
  • In this paper We describe an algorithm which is devised for 4he partition o# the input space and the generation of fuzzy rules by the fuzzy entropy and tested with the time series prediction problem using Mackey-Glass chaotic time series. This method divides the input space into several fuzzy regions and assigns a degree of each of the generated rules for the partitioned subspaces from the given data using the Shannon function and fuzzy entropy function generating the optimal knowledge base without the irrelevant rules. In this scheme the basic idea of the fuzzy neural network is to realize the fuzzy rules base and the process of reasoning by neural network and to make the corresponding parameters of the fuzzy control rules be adapted by the steepest descent algorithm. The Proposed algorithm has been naturally derived by means of the synergistic combination of the approximative approach and the descriptive approach. Each output of the rule's consequences has expressed with its connection weights in order to minimize the system parameters and reduce its complexities.

  • PDF

A Design and Implementation of Music & Image Retrieval Recommendation System based on Emotion (감성기반 음악.이미지 검색 추천 시스템 설계 및 구현)

  • Kim, Tae-Yeun;Song, Byoung-Ho;Bae, Sang-Hyun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.1
    • /
    • pp.73-79
    • /
    • 2010
  • Emotion intelligence computing is able to processing of human emotion through it's studying and adaptation. Also, Be able more efficient to interaction of human and computer. As sight and hearing, music & image is constitute of short time and continue for long. Cause to success marketing, understand-translate of humanity emotion. In this paper, Be design of check system that matched music and image by user emotion keyword(irritability, gloom, calmness, joy). Suggested system is definition by 4 stage situations. Then, Using music & image and emotion ontology to retrieval normalized music & image. Also, A sampling of image peculiarity information and similarity measurement is able to get wanted result. At the same time, Matched on one space through pared correspondence analysis and factor analysis for classify image emotion recognition information. Experimentation findings, Suggest system was show 82.4% matching rate about 4 stage emotion condition.

A Usability Testing of the Word-Prediction Function of the AAC Keyboard for the People with Cerebral Palsy (보완대체의사소통(AAC) 글자판의 단어예측기능에 대한 뇌병변장애인 대상의 사용성 평가)

  • Lee, H.Y.;Hong, K-H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.9 no.3
    • /
    • pp.209-214
    • /
    • 2015
  • The purpose of this study was to examine (1) the influence of the word-prediction function on the sentence generation speed and (2) the necessity, convenience, and satisfaction of the word-prediction function of the AAC keyboard. A total of 10 adults with cerebral palsy participated and the word-prediction function of the Korean high-tech AAC device called "MyTalkie Smart" keyboard was used for this study. Participants were required to generate sentence as voice outputs using a word-prediction function and letters direct-input function respectively, then they were required to evaluate the necessity, convenience, and satisfaction using a five-point Likert scale. Other user requirements were examined using a free feedback. The results of this study presented that the sentence generation speeds were faster when participants used a word-prediction function than using a letters direct-input function. However, there was no statistically significant difference between these two input methods, and it might be due to the lack of time to practice the new device. Participants showed positive responses for the necessity, convenience, and satisfaction of the word-prediction function.

  • PDF

Vehicle Headlight and Taillight Recognition in Nighttime using Low-Exposure Camera and Wavelet-based Random Forest (저노출 카메라와 웨이블릿 기반 랜덤 포레스트를 이용한 야간 자동차 전조등 및 후미등 인식)

  • Heo, Duyoung;Kim, Sang Jun;Kwak, Choong Sub;Nam, Jae-Yeal;Ko, Byoung Chul
    • Journal of Broadcast Engineering
    • /
    • v.22 no.3
    • /
    • pp.282-294
    • /
    • 2017
  • In this paper, we propose a novel intelligent headlight control (IHC) system which is durable to various road lights and camera movement caused by vehicle driving. For detecting candidate light blobs, the region of interest (ROI) is decided as front ROI (FROI) and back ROI (BROI) by considering the camera geometry based on perspective range estimation model. Then, light blobs such as headlights, taillights of vehicles, reflection light as well as the surrounding road lighting are segmented using two different adaptive thresholding. From the number of segmented blobs, taillights are first detected using the redness checking and random forest classifier based on Haar-like feature. For the headlight and taillight classification, we use the random forest instead of popular support vector machine or convolutional neural networks for supporting fast learning and testing in real-life applications. Pairing is performed by using the predefined geometric rules, such as vertical coordinate similarity and association check between blobs. The proposed algorithm was successfully applied to various driving sequences in night-time, and the results show that the performance of the proposed algorithms is better than that of recent related works.