• 제목/요약/키워드: 적응적 에지 검출

Search Result 60, Processing Time 0.026 seconds

Adult Image Classification using Adaptive Skin Detection and Edge Information (적응적 피부색 검출과 에지 정보를 이용한 유해 영상분류방법)

  • Park, Chan-Woo;Park, Ki-Tae;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.1
    • /
    • pp.127-132
    • /
    • 2011
  • In this paper, we propose a novel method of adult image classification by combining skin color regions and edges in an input image. The proposed method consists of four steps. In the first step, initial skin color regions are detected by logical AND operation of all skin color regions detected by the existing methods of skin color detection. In the second step, a skin color probability map is created by modeling the distribution of skin color in the initial regions. Then, a binary image is generated by using threshold value from the skin color probability map. In the third step, after using the binary image and edge information, we detect final skin color regions using a region growing method. In the final step, adult image classification is performed by support vector machine(SVM). To this end, a feature vector is extracted by combining the final skin color regions and neighboring edges of them. As experimental results, the proposed method improves performance of the adult image classification by 9.6%, compared to the existing method.

Adaptive Segment-length Thresholding for Map Contour Extraction (등고선 추출을 위한 적응적 길이 임계화)

  • 박천주;오명관;전병민
    • The Journal of the Korea Contents Association
    • /
    • v.3 no.4
    • /
    • pp.23-28
    • /
    • 2003
  • This paper describes, in order to extract contour from topographic map image, an adaptive segment-length thresholding using a threshold depended on target image. First of all, after recognizing the primary symbols and detecting two edges from the projection histogram of the elevation value area, the threshold value is determined by the distance between the edges. Then, the subdivision is peformed by searching a branch point and erasing its neighboring Hack pixels. And contour components are extracted by segment-length thresholding. The experimental result shows that the final image contains non-contour component of 2.41% and contour one of 97.59%.

  • PDF

Small Target Detection Using Bilateral Filter Based on Edge Component (에지 성분에 기초한 양방향 필터 (Bilateral Filter)를 이용한 소형 표적 검출)

  • Bae, Tae-Wuk;Kim, Byoung-Ik;Lee, Sung-Hak;Kim, Young-Choon;Ahn, Sang-Ho;Sohng, Kyu-Ik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9C
    • /
    • pp.863-870
    • /
    • 2009
  • Bilateral filter (BF) is a nonlinear filter for sharpness enhancement and noise removal. The BF performs the function by the two Gaussian filters, the domain filter and the range filter. To apply the BF to infrared (IR) small target detection, the standard deviation of the two Gaussian filters need to be changed adaptively between the background region and the target region. This paper presents a new BF with the adaptive standard deviation based on the analysis of the edge component of the local window, also having the variable filter size. This enables the BF to perform better and become more suitable in the field of small target detection Experimental results demonstrate that the proposed method is robust and efficient than the conventional methods.

Robust Method of Updating Reference Background Image in Unstable Illumination Condition (불안정한 조명 환경에 강인한 참조 배경 영상의 갱신 기법)

  • Ji, Young-Suk;Han, Young-Joon;Hahn, Hern-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.1
    • /
    • pp.91-102
    • /
    • 2010
  • It is very difficult that a previous surveillance system and vehicle detection system find objects on a limited and unstable illumination condition. This paper proposes a robust method of adaptively updating a reference background image for solving problems that are generated by the unstable illumination. The first input image is set up as the reference background image, and is divided into three block categories according to an edge component. Then a block state analysis, which uses a rate of change of the brightness, a stability, a color information, and an edge component on each block, is applied to the input image. On the reference background image, neighbourhood blocks having the same state of a updated block are merged as a block. The proposed method can generate a robust reference background image because it distinguishes a moving object area from an unstable illumination. The proposed method very efficiently updates the reference background image from the point of view of the management and the processing time. In order to demonstrate the superiority of the proposed stable manner in situation that an illumination quickly changes.

AWGN Removal Filter using Sobel Edge Detection (소벨 에지 검출을 이용한 AWGN 제거 필터)

  • Cheon, Bong-Won;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.533-535
    • /
    • 2018
  • As the use frequency of electronic communication equipment increases due to the influence of the 4th industrial revolution, the importance of image and signal processing is increasing. However, due to noise caused by various causes, the reliability of the equipment is degraded and malfunctions are caused. In this paper, we propose an algorithm to remove AWGN in most environments. The existing methods show relatively poor performance due to the smoothing phenomenon at the boundary of the image. To overcome this problem, we proposed a filter algorithm that adapts to the boundary region using the Sobel edge detection to remove the noise. And using the PSNR compared with traditional methods, such as to demonstrate the performance of the proposed algorithm.

  • PDF

Robust Real-Time Lane Detection in Luminance Variation Using Morphological Processing (형태학적 처리를 이용한 밝기 변화에 강인한 실시간 차선 검출)

  • Kim, Kwan-Young;Kim, Mi-Rim;Kim, In-Kyu;Hwang, Seung-Jun;Beak, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.6
    • /
    • pp.1101-1108
    • /
    • 2012
  • In this paper, we proposed an algorithm for real-time lane detecting against luminance variation using morphological image processing and edge-based region segmentation. In order to apply the most appropriate threshold value, the adaptive threshold was used in every frame, and perspective transform was applied to correct image distortion. After that, we designated ROI for detecting the only lane and established standard to limit region of ROI. We compared performance about the accuracy and speed when we used morphological method and do not used. Experimental result showed that the proposed algorithm improved the accuracy to 98.8% of detection rate and speed of 36.72ms per frame with the morphological method.

The Slope Extraction and Compensation Based on Adaptive Edge Enhancement to Extract Scene Text Region (장면 텍스트 영역 추출을 위한 적응적 에지 강화 기반의 기울기 검출 및 보정)

  • Back, Jaegyung;Jang, Jaehyuk;Seo, Yeong Geon
    • Journal of Digital Contents Society
    • /
    • v.18 no.4
    • /
    • pp.777-785
    • /
    • 2017
  • In the modern real world, we can extract and recognize some texts to get a lot of information from the scene containing them, so the techniques for extracting and recognizing text areas from a scene are constantly evolving. They can be largely divided into texture-based method, connected component method, and mixture of both. Texture-based method finds and extracts text based on the fact that text and others have different values such as image color and brightness. Connected component method is determined by using the geometrical properties after making similar pixels adjacent to each pixel to the connection element. In this paper, we propose a method to adaptively change to improve the accuracy of text region extraction, detect and correct the slope of the image using edge and image segmentation. The method only extracts the exact area containing the text by correcting the slope of the image, so that the extracting rate is 15% more accurate than MSER and 10% more accurate than EEMSER.

Content-based Image Retrieval using adaptive weight of Color and texture information (색상과 질감정보의 적응적 가중치 기법을 이용한 내용기반 영상검색)

  • Huang, Chun-Hua;Kim, Gye-Young;Choi, Hyung-Il
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.39-42
    • /
    • 2011
  • 본 논문에서는 영상들의 특징들을 추출하여 특징 값들의 비교를 통하여 질의 영상의 유사 영상을 검색하는 방법을 제안한다. 제안하는 방법은 입력 영상들의 색상 히스토그램으로 색상 특징 값들을 추출하고 질감 정보인 에지 정보와 이웃화소간의 공간 관계를 분석하여 질감 특징 값들을 추출하여 저장한 후 질의 이미지의 색상과 질감 특징들을 구하여 비교를 통하여 유사도를 분석하고 결과 영상을 보여준다. 또한 색상과 질감을 혼합하여 사용할 때 적응적으로 가중치를 부여함으로써 가중치가 적합하지 않아 발생하는 오 검출될 현상을 피할 수 있게 되었다. 실험을 통하여 기존의 방법과의 성능을 비교분석하였고 본 방법의 우수성을 입증하였다.

  • PDF

Content Adaptive Interpolation for Intra-field Deinterlacting (공간적 디인터레이싱을 위한 컨텐츠 기반 적응적 보간 기법)

  • Kim, Won-Ki;Jin, Soon-Jong;Jeong, Je-Chang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10C
    • /
    • pp.1000-1009
    • /
    • 2007
  • This paper presents a content adaptive interpolation (CAI) for intra deinterlacing. The CAI consists of three steps: pre-processing, content classification, and adaptive interpolation. There are also three main interpolation methods in our proposed CAI, i.e. modified edge-based line averaging (M-ELA), gradient directed interpolation (GDI), and window matching method (WMM). Each proposed method shows different performances according to spatial local features. Therefore, we analyze the local region feature using the gradient detection and classify each missing pixel into four categories. And then, based on the classification result, a different do-interlacing algorithm is activated in order to obtain the best performance. Experimental results demonstrate that the CAI method performs better than previous techniques.

Image Retrieval Using Entropy Features (엔트로피 특징을 이용한 영상검색)

  • 서상용;천영덕;김남철
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.655-658
    • /
    • 2000
  • 본 논문에서는 웨이브릿 영역에서 엔트로피 특징과 웨이브릿 모멘트의 융합에 의한 효율적인 영상기법을 제안한다. 엔트로피 특징은 밝기값의 국부적 변화도에 민감하고 벨리, 에지 등의 특징을 잘 검출한다. 이러한 특징을 밴드별 위치정보와 주파수정보를 모두 가지는 웨이브릿 모멘트와 융합하여 내용기반 영상검색에 효과적으로 적응하였다. 실험에 사용한 DB는 Corel Draw영상을 사용하였으며 실험 결과, 기존의 검색 방법들에 비해 매우 우수한 검색 성능을 보임을 확인하였다.

  • PDF