• Title/Summary/Keyword: 적분근사해

Search Result 179, Processing Time 0.02 seconds

Iterative Series Methods in 3-D EM Modeling (급수 전개법에 의한 3차원 전자탐사 모델링)

  • Cho In-Ky;Yong Hwan-Ho;Ahn Hee-Yoon
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.3
    • /
    • pp.70-79
    • /
    • 2001
  • The integral equation method is a powerful tool for numerical electromagnetic modeling. But the difficulty of this technique is the size of the linear equations, which demands excessive memory and calculation time to invert. This limitation of the integral equation method becomes critical in inverse problem. The conventional Born approximation, where the electric field in the anomalous body is approximated by the background field, is very rapid and easy to compute. However, the technique is inaccurate when the conductivity contrast between the body and the background medium is large. Quasi-linear, quasi-analytical and extended Born approximations are novel approaches to 3-D EM modeling based on the linearization of the integral equations for scattered EM field. These approximation methods are much less time consuming than full integral equation method and more accurate than conventional Born approximation. They we, however, still approximate methods for 3-D EM modeling. Iterative series methods such as modified Born, quasi-linear and quasi-analytical can be used to increase the accuracy of various approximation methods. Comparisons of numerical performance against a full integral equation and various approximation codes show that the iterative series methods are very accurate and almost always converge. Furthermore, they are very fast and easy to implement on a computer. In this study, extended Born series method is developed and it shows more accurate result than that of other series methods. Therefore, Iterative series methods, including extended Born series, open principally new possibilities for fast and accurate 3-D EM modeling and inversion.

  • PDF

3-D EM Modeling Using Approximate Integral Equation Method for the Models with Non 1-D Background Conductivity (1차원 이외의 배경 전기전도도 구조에서 근사 적분방정식을 이용한 3차원 전자탐사 모델링)

  • Lee Seong Kon;Zhdanov Michael S.
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.3
    • /
    • pp.207-217
    • /
    • 2005
  • We present a new approximate formulation of the integral equation (IE) method for models with variable background conductivity. This method overcomes the standard limitation of the conventional If method related to the use of a horizontally layered background only. The new approximate IE method still employs the Green's functions for a horizontally layered 1-D model. However, the new method allows us to use an inhomogeneous background with the IE method. The method was carefully tested for modeling the EM field for complex structures with a known variable background conductivity. It can find wide application in modeling EM data for multiple geological models with some common geoelectrical features, like a known inhomogeneous overburden, or salt dome structures.

Numerical Integration-based Performance Analysis of Cross-eye Jamming Algorithm through Amplitude Ratio Perturbation (진폭비 섭동에 의한 cross-eye 재밍에 대한 수치적분 기반 성능분석)

  • Kim, Je-An;Choi, Yoon-Ju;Lee, Joon-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.12
    • /
    • pp.59-64
    • /
    • 2021
  • This paper deals with the performance analysis of the jamming effect of cross-eye when the difference between the real amplitude ratio and the nominal amplitude ratio due to mechanical defects is modeled as a random variable with a normal distribution. We propose how to evaluate mean square difference (MSD) obtained using a numerical integration-based approach. The MSD obtained by the proposed method is closer to non-approximated Monte-Carlo simulation-based MSD than the analytic MSD calculated using the first-order Taylor approximation and the second-order Taylor approximation. It is shown that, based on the numerical integration, the effect of amplitude ratio perturbation on the cross-eye jamming performance can be evaluated without going through the computationally intensive Monte-Carlo method.

A Study on the Development of Shape Functions of Polyhedral Finite Elements (다면체 유한요소의 형상함수 개발에 관한 연구)

  • Kim, Hyun-Gyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.3
    • /
    • pp.183-189
    • /
    • 2014
  • In this paper, a polyhedral element is presented to solve three-dimensional problems by developing shape functions based on Wachspress coordinates and moving least square approximation. A subdivision of polyhedrons into tetrahedral domains is performed for the construction of shape functions of polyhedral elements, and numerical integration of the weak form is carried out consistently over the tetrahedral domains. The weight functions for moving least square approximation are defined by solving Laplace equation with boundary values based on Wachspress coordinates on polyhedral element faces. Polyhedral elements presented in this paper have similar properties to conventional finite element regarding the continuity, the completeness, the node-element connectivity and the inter-element compatibility. Numerical examples show the effectiveness of the present method for solving three-dimensional problems using polyhedral elements.

Approximation Method for Failure Rates in a General Event Tree (사건 가지상의 사고율 추정을 위한 근사적인 방법)

  • Yang, Hee Joong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.22 no.52
    • /
    • pp.181-189
    • /
    • 1999
  • 사건 가지 상의 파라메터 추정을 위한 베이지안 접근방식이 제시된다. 먼저 일반적인 사건 가지를 따라 발생하는 사고를 예측하기 위한 모형에 대해 설명한다. 이 경우 이론적으로 베이지안 기법을 적용하는 방법에 대해 논하고 실제로 문제를 풀 경우에 발생하는 다차원 수치적분 문제를 다룬다. 감마 분포와 베타분포가 이용될 경우 위 문제를 쉽게 해결할 수 있는 근사적 방법에 대해 연구한다. 또한 사건가지상의 여러 경로가 같은 수준의 사고로 분류 될 수 있는 경우에 대해서도 위와 같은 방법에 관한 연구를 한다. 결과적으로 한 사고율이 여러 개의 파라메터의 함수로 표현되어 다차원의 수치적분이 요구되는 경우 이를 쉽게 해결 할 수 있는 근사적인 방법이 제시되어 베이지안 기법의 적용이 용이해 질 수 있다.

  • PDF

Wiener - Hopf 方法 (II)

  • 이두성
    • Journal of the KSME
    • /
    • v.22 no.4
    • /
    • pp.316-323
    • /
    • 1982
  • 전고에서는 후리에변환에 의하여 그 해를 구할 수 있는 문제중 Wiener-Hopf 방법의 사용을 요 하는 문제들에 대하여 고찰하였고 예제들의 해를 구하므로서 그 해석 방법을 알아보았다. 본 강좌에서는 적분 방정식의 해를 그 인수가 초등할수인 다른 핵으로 대체하여 근사해를 구하는 방법과 마지막으로 dual 적분방식을 다루고 Wiener-Hopf 방법에 대한 강좌를 끝내고자 한다.

  • PDF

Three-dimensional Cross-hole EM Modeling using the Extended Born Approximation (확장 Born 근사에 의한 시추공간 3차원 전자탐사 모델링)

  • Lee, Seong-Kon;Kim, Hee-Joon;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.2
    • /
    • pp.86-95
    • /
    • 1999
  • This paper presents an efficient three-dimensional (3-D) modeling algorithm using the extended approximation to an electric field integral equation. Numerical evaluations of Green's tensor integral are performed in the spatial wavenumber domain. This approach makes it possible to reduce computing time, to handle smoothly varying conductivity model and to remove singularity problems encountered in the integration of Green's tensor at a source point. The responses obtained by 3-D modeling algorithm developed in this study are compared with those by the full integral equation for a thin-sheet EM scattering. The extensive analyses on the performance of modeling algorithm are made with the conductivity contrasts and source frequencies. These results show that the modeling algorithm are accurate up to the conductivity contrast of 1:16 and the frequency range of 100 Hz-100 kHz. The extended Born approximation, however, may produce inaccurate results for some source and model configurations in which the electric field is discontinuous across the conductivity boundary. We performed the modeling of a composite model of which conductivity varies continuously and this shows the modeling algorithm developed in this study is efficient for 3-D EM modeling. For a cross-hole source-receiver configuration a composite model of which conductivity varies continuously can be successfully simulated using this algorithm.

  • PDF

Evaluation of Inverse Fourier Integral Considering the Distances from the Source Point in 2D Resistivity Modeling (전기비저항탐사 2차원 모델링에서 송수신 간격을 고려한 푸리에 역변환)

  • Cho, In-Ky;Jeong, Da-Bhin
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • In the two-dimensional (2D) modeling of electrical method, the potential in the space domain is reconstructed with the calculated potentials in the wavenumber domain using inverse Fourier transform. The inverse Fourier integral is numerically evaluated using the transformed potential at different wavenumbers. In order to improve the precision of the integration, either the logarithmic or exponential approximation has been used depending on the size of wavenumber. Two numerical methods have been generally used to evaluate the integral; interval integration and Gaussian quadrature. However, both methods do not consider the distance from the current source. Thus the resulting potential in the space domain shows some error. Especially when the distance from the current source is very small or large, the error increases abruptly and the evaluated potential becomes extremely unstable. In this study, we developed a new method to calculate the integral accurately by introducing the distance from the current source to the rescaled Gauss abscissa and weight. The numerical tests for homogeneous half-space model show that the developed method can yield the error level lower than 0.4 percent over the various distances from the current source.

Saddlepoint Approximation to the Distribution of General Statistic (일반적 통계량의 분포함수에 대한 안부점 근사)

  • 나종화
    • The Korean Journal of Applied Statistics
    • /
    • v.11 no.2
    • /
    • pp.287-302
    • /
    • 1998
  • Saddlepoint approximation to the distribution function of sample mean(Daniels, 1987) is extended to the case of general statistic in this paper. The suggested approximation methods are applied to derive the approximations to the distributions of some statistics, including sample valiance and studentized mean. Some comparisons with other methods show that the suggested approximations are very accurate for moderate or small sample sizes. Even in extreme tail the accuracies are also maintained.

  • PDF

Closed-Form Green's Function for the Analysis of Microstrip Structure (마이크로스트립 구조 해석을 위한 Closed-Form 그린 함수)

  • Yang, Seung-Woo;Kim, Sung-Jin;Kim, Gun-Woo;Lee, Taek-Kyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.3
    • /
    • pp.281-293
    • /
    • 2008
  • In the layered medium, the Sommerfeld integral must be evaluated to calculate a space domain Green's function. The real axis integration method provides stable and accurate results over wide ranges of the observation distance and the singnal frequency. But this method has the in efficiency of approximation when the field point z is changed. Also, as the amplitude of z increases, the change of the spectral domain function is more rapidly. Therefore, the approximation is difficult when z becomes larger. In this paper, we propose a method to calculate an accurate closed-form Green's function for microstrip structure by using the closed-loop integration path.