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Approximation Method for Failure Rates in a General

Event Tree'
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1. Introduction

Event Tree is one of the most frequently used tools in analyzing the occurrence of an
accident and its way of propagation to more severe accident. Even though the usefulness
of event trees many researchers apply classical statistical approaches on them, thereby
event trees are often known as tools that only analyze the way of accident initiation and
escalation after an accident occurs. NUREG report[ 8] can be one of the examples of the
above argument. But we can get much more information from an event tree when we
approach from a slightly different angle. Yangl[4, 5 6] adopted bayesian approach in
updating parameters in event trees and extended the use of event trees to the adaptive
parameter updating and forecasting. Sometimes many dimensional numerical integration is
inevitably required when we follow bayesian approach in parameter updating. A general
event tree is pomposed of many branches, thus as many parameters as the number of
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branches are involved. Therefore the probability of a specific sequence in a ftree is a
product of many parameters and we hardly expect such value is expressed in a nice closed
form distribution. This is one of the most difficult problem in applying bayesian approach
to real world problems. In this paper we propose a way of approximation method that
detours such problem and makes the bayesian approach on event trees easy to perform.

2. General Event Tree Models

The failure rate that follows a specific sequence in an event tree is expressed as a
function of initial failure rate, A, and the probability of malfunction of following
sub-systems, 7's. Consider a general event tree in figure 1, where J sub-systems are
involved and ends up with M different accident sequences. This is an event tree that
shows the initiating event occurring with the rate of A escalates to more severe accident
depending on the function or malfunction of following safety backup systems. Let the rate
of initiating event be A, the probability of malfunction of jth sub-system be x; j=12,..J.
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<Figure 1> An example of a general event tree

Also let the number of accidents in time period (0,T) following the mth path from the
bottom of the event tree be nm(0,T), m=12,..M The maximum of M can be 2. Once an
initiating event occurs, the probability of following a specific sequence of an event tree
depends on functioning or malfunctioning of sub-systems. Let the probability vector
associated with the mth accident sequence from the bottom of an event tree be fm In
figure 2, for example, the probability that follows the second sequence from the bottom is
the probability that the first sub-system fails, the second sub-system succeeds, and the
third sub-system fails. Thus #: is represented by mi(l1-m2)xs. Therefore A fm
represents the failure rate that follows the mth sequences from the bottom of an event
tree, and we let A @m be Am.
The distribution of failure rate A is usually assumed to follow a lognormal distribution

[ 2 3 7, 8. The rational of using lognormal distribution is that a safety system
provided with many redunduncies tends to bunch up toward the low probability of failure.
Yang[4] argued that the shape of gamma distribution also showed the tendency of positive
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skewness and it was a better candidate for the failure rate from the aspect of calculational
efficiency. Thus, in this paper, we assume gamma distribution for A with parameter «,
B . The distributions for the failure probabilities n's are assumed to be beta distributions
since beta distributions are quite flexible covering almost all forms of distribution on (0,1).
The probability of jth sub-system failure xzj is assumed to be beta distribution with

parameters aj, by’
AT TIla, B), 7; = Be(a;, by)
Then Fn denoting the cumulative distribution of Am is expressed as
Fmn(z) = Prob{dm = 4 80m < 2} = J ..f iom <. f(2) g(6n ) d2 dbnm (1)

where f( 1) and g( 8 ) denotes the probability density function of A4 and & m.
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<Figure 2> An event tree that includes three sub-systems

The probability density function of Am, fm( Am), is obtained by differentiating equation (1)
with respect to z;

fn(Aw) = —=Fun(2) )

The distribution resulting from the above equation can not usually be expected to be in a
nice close form. Rather we are supposed to be encounter a j+1 dimensional numerical
integration when we deal with the general event tree that contains j sub-systems. Such a
many dimensional numerical integration is practically unsolvable or it requires considerable
computer time. In order to circumvent this difficulty, we propose a method of
approximation that essentially breaks down a problem involving many integrations into

several repetitive steps so that each step involves only a small number of integrations.

3. An Approximation Method in a General Event Tree Model

Let the failure rate following the mth sequence from the bottom of the event tree in
figure 1 be Am Then Am is expressed as A times @m, which is the probability vector
associatedwith mth sequence from the bottom of the general event tree in figure 1 as
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defined in the previous section. Let the mean and the variance of the probability 6, be
“m, and o m, respectively. The resulting mean and the variance of A, can be expressed
as equation (3).

2
E[Am]=%”my Var[/\m]= 02ﬂ3n+a—+a_”3n 3)

W™

The distribution of 8m is relatively sharp compared to the shape of the distribution of A

O m

especially when is small. Also the posterior variance of 6 m decreases to zero as

m
failures are accumulated. In this case 6, can be approximated to be a constant. The
distribution resulting from the multiplication of constant to a gamma distribution is also
another gamma distribution;

Am~ r(am, Bm)

where om, Bm are obtained as solutions of following equations :

X = _a P Q@ m — Q P 2 + u
B - B ms B g" B 2 m B 2 m
Then we the following parameters of A !
14 3;1 B Hoom

Bw=

&m = @ (a+1) o 3+ ¢ 2

(e+D) o 2+ uly’
Since the distribution of Am is approximated to be a gamma distribution, the predictive
distribution for the time to next accident following the same sequence can be obtained as a
closed form distribution which is a shifted pareto distribution as following;

B m
Bt X,

am
mt X

Ham) = [Mxwl A K 2w dan= ( ) " (5 )

The above approximation method help us detour the difficulty of many dimensional
numerical integration that we often encounters when to make a bayesian forecasting. This

method becomes more accurate when is small. As we acquire more and more

m
data, the distribution of 6, becomes sharper and sharper, resulting in smaller values of
I m
L om
data.

Therefore we can expect more accurate approximations as we observe more
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4. Approximation Method When Several Sequences Ends Up to Same Levels
of Accidents

There are often cases when the different sequences end up with same level of accidents.
In this case it has more meaning to analyze the specific level of accidents rather than to
analyze the specific sequence of accidents. The event tree in figure 1 is simplified to as
figure 3, assuming M different accident sequences are combined to H different levels of
accidents. The number of accident on the left branch n(0,T) follows the poisson
distribution with parameter A. The number of accidents on right hand side branches,
nn(0,T), is the number that is obtained by randomly partitioning the total number of
accident n(0,T) with the probability 8.  Therefore nn(0,T), h= 1,2, ..,H, also follows
poisson distribution with parameter A @n  Then the time to next accident that follows
each path, Xp, follows exponential distribution with parameter A 6. Let’s assume, for
example, that the accidents that follow the 2th, 6th, and 9th paths are classified as the
same level of accidents. The time to such level of accident can occur following any of
these paths so that the time to such accident, X, is the minimum of time to accident that
follows any of these paths;

X = min[Xz, Xs, Xol
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Figure 3. An event tree that combines same levels of accidents.

Therefore X follows exponential distribution with parameter obtained by summing all
parameters of exponential distributions for different sequences;

X| A,0,.0m ~ Exp(Az+ Ae+ Ag)

As+ et A9 is expressed as A(B2+806+609), and the distribution of 6@2+8s+89 is
considerably sharp compared to that of A. As we explained before the distribution of A2+
Ae+ A9 iIs approximated as a gamma distribution that makes easy to obtain the distribution
of tifne to the next accident of a specific level.
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5. Numerical example

Consider the event tree in figure 4 that shows the escalation process up to more severe
accident from initiating events.

T2

<Figure 4.> An event tree that includes two sub-systems

The counts at the end of each sequence can be considered as randomly partioned numbers
from the total number of initiating events with probabilities of (1- 7 )(1-72), (I-7) 72, 7
1(1-72), and mima from the top to the bottom sequence, respectively. Then the number
of accidents that pass through each sequence follows a Poisson distribution with a rate of
Ao times the associated probabilities. Let's assume that the accident following the first
sequence from the top of the event tree remains as the same severity accident as the
initiating event due to the successful operation of the first and the second sub-systems,
and the accidents following remaining three sequences escalate to more severe accidents
due to the failure of operation of one or both of the sub-systems. Let Xi be the time to
the next accident following the ith sequence from the top of the event tree. Then time to
the next accident is exponentially distributed with the appropriate rate:

X2 T ExplAo(l-71)7m2)
Xs 7 Exp{Aomi{l-72))
X4~ Exp(Aomi7ma)

Since the severe accident may happen following any sequence except the first sequence in
the event tree, the time to next severe accident, X, is minimum of X2, X3, and X4

X | Adgm,m2) = Min[Xp, X3, Xa | Ao, 1,72l ~ ExplA{mitma-mima )

The above is because the minimum of exponentially distributed independent random
variables is also exponential with rate of the sum of all individual rates. Let the resulting
rate of more severe accident Ado{mi1*7mo-m172 ) be A1

To find the distribution of A, let Ao, 71, x2 follow distributions of Fi, Fo, Gi, and G,
respectively. Then the cumulative distribution of A1 is

Fi(z) =Prob{Ai=Afmi+remin2 ) < z}
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By differentiating equation (4), we obtain
_('r " 2— Ag 7y 1
A@= [0 [ i) a(Gg2) el n)— Gy d Aed s )

Here we want to find a closed form distribution that approximates the distribution obtained

by equation (5). Let Ao “I'(ao, Bo) and E{m1*+mo-mimel=uy, and Varlm 1+ 72— m172]=

01%. The mean and variance of the more severe accident are calculated from

2
oy ey 2, %0 tay,

El A4 = B, Mo Var[ A1] = 5,0 17N B,° 7

(6)

As justified in the previous section, A1 can be approximated by 1T (ai, B1). We obtain
parameters a3, £1 from equation (6):

a = a IJ% B = Boﬂl
! " (aotl)o 3+ u %’ ! (eg+Do 3+ p?

(7

We arbitrarily assume Ao follows gamma distribution with parameters (100, 200), xi,
and 72 follow beta distribution with parameters (10, 500), and (5, 150), respectively. Then
the parameters of the arrival rate of more severe accident is approximately obtained by
equation (7);

A1~ T(99.8, 3890)

The gamma distribution obtained by the approximation method suggested in this paper is
compared with the distribution obtained by the numerical integration based on equation (4),
that is in figure 5. Figure 5 shows that the approximation is fairly close. Furthermore, as
we acquire more and more data the distributions of 73, and 72 become sharper and
sharper, resulting in smaller values of o1/u1. Therefore we can expect more accurate
approximations as we observe more data.
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<Figure 5> Distributions obtained by numerical integration and obtained by approximation

6. Summary

A bayesian approach is adopted with the use of general event tree models. We find the
way of detouring the difficulty that often encounters when to apply bayesian forecasting.
Gamma distribution for the accident initiating rate, and beta distribution for failure
probabilities are adopted. The failure rate following specific accident sequence in an event
tree is approximated to be another gamma distribution that makes the forecasting time to
next accident be easy. In our case the predictive distribution is ended up with shifted
pareto distribution. We also analyze the case where several different accident sequences
result to same levels of accidents. In such case, similar approach is applied and also
provides with closed form distribution for the time to next accident. The simple and easy
results derived in this paper can be applied in predicting time to next accidents or number
of accidents in a given period of time in a general event tree.
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