• Title/Summary/Keyword: 저항모멘트

Search Result 263, Processing Time 0.021 seconds

Probabilistic Characteristics of Dead Load Effect and Resistance Variables for Bridge Members (교량부재의 사하중효과 및 저항의 확률적 특성)

  • 정철헌;오병환
    • Magazine of the Korea Concrete Institute
    • /
    • v.5 no.3
    • /
    • pp.142-151
    • /
    • 1993
  • 교량 구조물의 안전성(신뢰성) 평가는 중요한 작업으로서, 교량 구조물의 안전성은 부재 단면의 저항과부재에 작용하는 외부하중에 의해서 결정된다. 부재의 강도는 부재를 구성하는 재료의 강도, 부재의 치수 및 단면으 저항을 계산하는 산정식등에 내재하는 오차등으로 인해서 공칭저항과 실제값과는 많은 차이가 발생하며, 교량 구조물에서 발생하는 사하중 모멘트는 해석변수와 단면 자중에 의한 하중변수에 의해서 영향을 받는다. 본 연구에서는 사하중효과의 부재 저항의 확률특성을 결정하기 위한 신뢰성 연구를 수행하기 위해서 이들 기본변수들에 대한 확률특성을 실측 및 실험자료를 통해서 우선적으로 평가하였다. 이들을 구성하는 각 기본변수들의 확률특성은 기존 연구결과 및 본 연구의 현장 실측 자료를 hd해서 결정하였다. 본 연구의 교량의 안전도 평가 및 교량의 신뢰성 해석을 합리적으로 수행할 수 있는 유용한 토대를 제공하는 것으로 사료된다.

Investigation of Critical Breaking Moment through Field Tree-Pulling Test (현장 인발시험을 통한 수목의 한계 전도모멘트 검토)

  • Im, Dongkyun;Kim, Won;Choi, Sung-Uk;Kim, Yongjeon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4B
    • /
    • pp.323-332
    • /
    • 2011
  • In order to properly manage trees in rivers, the impact of trees on flooding and their ecological characteristics need to be considered and a plan needs to be established. The hydraulic impact by trees is reduction of conveyance and hydraulic structure's function due to overturn arising from flow force. A field pulling test was carried out to measure the critical resistance force for when trees break in order to discover the level of resistance that trees inside the river have to external force. The relevant factors for discovering the critical breaking moment for trees include tree species, which determines the external characteristic of trees, tree diameter at breast height, and tree height. In this study, the correlation between critical breaking moment and diameter at breast height were used. The tree's limit or critical breaking moment was tested using 100 shrubs and tall trees with a breast height diameter of 4.9 to 32.8 cm. It was difficult to derive a correlation between diameter at breast height and critical breaking moment when shrubs and tall trees were being considered together, but when only tall trees were considered, a consistent correlation was found between them.

Design Method of RC Flat Plate Slab Considering Unbalanced Moment (불균형모멘트를 고려한 RC 무량판 슬래브 설계방법)

  • Song, Jin-Kyu;Sing, Ho-Beom;Oh, Sang-Won;Han, Sun-Ae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.149-152
    • /
    • 2008
  • In structural design provision, maximum punching shear stress of slabs is prescribed as combined stress of direct shear occurred by balanced gravity load and eccentric shear occurred by unbalanced moment. This means that the effect of unbalanced moment is considered to decide the punching shear stress. However, from the resistance capacity standpoint, the effect of unbalanced moment strength is not considered for deciding punching shear strength. For this problem, a model to show unbalanced moment-punching shear interrelation was proposed. In the model, the relation between load effect and resistance capacity in unbalanced moment-punching shear was two-dimensionally expressed. Using the interrelation model, a method how unbalanced moment strength should be considered to decide the punching shear strength was proposed. Additionally, a effective width enlargement factor for deciding the unbalanced moment strength of flat plates with shear reinforcements was proposed. The interrelation model proposed in this paper is very effective for the design because not only punching shear and unbalanced moment strengths but also failure modes of flat plates can be accurately predicted.

  • PDF

E-Polarized Reflection Coefficient by a Tapered Resistive Strip Grating with Zero Resistivity at Strip-Edges (저항띠의 양 끝에서 0으로 변하는 저항률을 갖는 주기격자에 의한 E-분극 반사계수)

  • 윤의중;양승인
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.2
    • /
    • pp.331-337
    • /
    • 1994
  • The scatting problem by E-polarized plane wave with obique incidence on a tapered resistive strip grating with zero resistivity(perfectly conducting) at strip-edges is analyzed by the method of moments in the spectral domain. Then the induced surface current density on the strip is expanded in a series of Chebyshev polynomials of the second kind. The expasion coefficients are calculated numerically in the spectral domain, the numerical results of the geometric-optical reflection coefficient for the tapered resistivity in this paper are compared with those for the existing uniform resistivity. And the position of sharp variation points in the magnitude of the geometric-optical reflection coefficient can be moved by varying the incident angle and the strip spacing, It is found out that these sparp variation points are due to the transition of higher mode between the propagation mode and the evanescent mode.

  • PDF

Progressive Collapse Resisting Capacity of Braced Frames (가새골조의 연쇄붕괴 저항성능)

  • Kim, Jin-Koo;Lee, Young-Ho;Choi, Hyun-Hoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.429-437
    • /
    • 2008
  • In this study the progressive collapse potential of braced frames were investigated using the nonlinear static and dynamic analyses. All of nine different brace types were considered along with a special moment-resisting frame for comparison. According to the pushdown analysis results, most braced frames designed per current design codes satisfied the design guidelines for progressive collapse initiated by loss of a first story mid-column; however most model structures showed brittle failure mode. This was caused by buckling of columns after compressive braces buckled. Among the braced frames considered, the inverted- V type braced frames showed superior ductile behavior during progressive collapse. The nonlinear dynamic analysis results showed that all the braced frame model structures remained in stable condition after sudden removal of a column, and their deflections were less than that of the moment-resisting frame.

Modeling and Parametric Studies on Moment-Curvature Relation of a Reinforced Concrete Column Subject In Axial-toad and Bi-Axil Moment (축하중과 이축모멘트를 받는 철근콘크리트 기둥의 모멘트-곡률에 관한 모델링 및 변수고찰)

  • 이차돈;최기봉;차준실;김성진
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.677-688
    • /
    • 2002
  • A analytical model is developed which can simulate a complete inelastic biaxial moment-curvature relations of a reinforced concrete column. The model can simulate sudden drop in moment capacity after peak moment and due to spalling of cover concrete. Parametric studies are performed examine the effects of constituent material properties as well as topological arrangement of reinforcements on moment-curvature relations and P-M interaction curve. It has been analytically observed that ductility of a reinforced concrete column is influenced mostly by magnitude of the axial load and spacings or the volume of lateral reinforcements. Compared to ACI P-M interaction curve, overall increase about 10% in square root of sum of squares of axial force and moment, and about 20% in peak load are observed for the columns reinforced according to ACI seismic design code.

Experimental Tests and Analytical Study for the Prediction of the Plastic Moment Capacity of an Unstiffened Top and Seat Angle Connection (무보강 상·하부 ㄱ형강 접합부의 소성휨모멘트 저항능력 예측을 위한 실험 및 해석적 연구)

  • Yang, Jae-Guen;Choi, Jung-Hwan;Kim, Hyun-Kwang;Park, Jae-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.547-555
    • /
    • 2011
  • An unstiffened top and seat angle connection is a type of partially restrained connection that is suitable for low- and medium-rise steel buildings. The plastic moment resisting capacity of such connection is needed in practical design, in addition to the accurate prediction of the initial rotational stiffness. Therefore, most of the studies conducted for the mentioned connections were performed to predict the initial stiffness and the plastic moment resisting capacity with varying geometric properties. The main parameters of such experimental tests were the thickness and high-strength bolt gauge distance of AISC LRFD-type A top and seat angle connections. Based on the test results, the analytical model was also proposed in this study. The applicability of the proposed model was verified by comparing the test results from this study with those of other studies.

Estimation of Beam Plastic Rotation Demands for Special Moment-Resisting Steel Frames (강구조 특수모멘트골조의 보 소성변형요구량 평가)

  • Eom, Tae-Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.405-415
    • /
    • 2011
  • For the safe seismic design of buildings, it is necessary to predict the plastic deformation demands of the members as well as the story drift ratio. In the present study, a simple method of estimating the beam plastic rotation was developed for special-moment-resisting steel frame structures designed with strong column-weak beam behavior. The proposed method uses elastic analysis rather than nonlinear analysis, which is difficult to use in practice. The beam plastic rotation was directly calculated based on the results of the elastic analysis, addressing the moment redistribution, the column and joint dimensions, the movement of the plastic hinge, the panel zone deformation, the gravity load, and the strain-hardening behavior. In addition, the rocking effect of the braced frame or core wall on the beam plastic rotation was addressed. For verification, the proposed method was applied to a six-story special-moment frame designed with strong column-weak beam behavior. The predicted plastic rotations of the beams were compared with those that were determined via nonlinear analysis. The beam plastic rotations that were predicted using the proposed method correlated well with those that were determined from the nonlinear pushover analysis.

Seismic Behavior of High-rise Steel Moment-resisting Frames with Vertical Mass Irregularity (수직질량 비정형이 존재하는 고층 강 모멘트-저항골조의 지진 거동)

  • Park, Byong-Jeong;Song, In-Hawn
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.1
    • /
    • pp.1-15
    • /
    • 2004
  • Dynamic analyses were carried out to study the seismic response of high-rise steel moment-resisting frames in sixteen story buildings. The frames are intentionally designed by three different design procedures; strength controlled design. strong column-weak beam controlled design. and drift controlled design. The seismic performances of the so-designed frames with vertical mass irregularities were discussed in view of drift ratio. plastic hinge rotation, hysteretic energy input and stress demand. A demand curve of hysteretic energy inputs was also presented with two earthquake levels in peak ground accelerations for a future design application.

Analytical Study on Effect of Floor Slab for Progressive Collapse Resistant Capacity of Steel Moment Frames (철골모멘트골조의 연쇄붕괴저항성능에 대한 바닥슬래브의 효과에 관한 해석적 연구)

  • Kim, Seonwoong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.1
    • /
    • pp.27-35
    • /
    • 2014
  • In this study, an improved energy-based nonlinear static analysis method are proposed to be used for more accurate evaluation of progressive collapse potential of steel moment frames by reflecting the contribution of a double-span floor slab. To this end, the behavior of the double-span floor slab was first investigated by performing material and geometric nonlinear finite element analysis. A simplified energy-absorbed analytical model by idealizing the deformed shape of the double-span floor slab was developed. It is shown that the proposed model can easily be utilized for modeling the axial tensile force and strain energy response of the double-span floor slab under the column-removal scenario.