• Title/Summary/Keyword: 저주파 지진잡음

Search Result 6, Processing Time 0.02 seconds

Characteristics of Low-frequency Ambient Seismic Noise in South Korea (국내 저주파수 무작위 지진잡음의 특성 연구)

  • Park, Iseul;Kim, Ki Young;Byu, Joongmoo
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.2
    • /
    • pp.67-75
    • /
    • 2016
  • To investigate spatial and temporal variations of low-frequency (${\leq}5Hz$) ambient seismic noise, we analyzed the noise data recorded for one whole year of 2014 at surface accelerometer stations in South Korea. After decomposed into low-frequency (LF; < 1 Hz) and high-frequency (HF; ${\geq}1Hz$) components, the root-mean-squared (RMS) amplitudes and power spectral densities (PSD) of the noise data were computed. The RMS amplitudes were larger on islands and near-shore stations, but also large RMS amplitudes were observed at inland stations in large cities only for HF components. The RMS amplitudes of HF components were larger in the daytime than at nighttime and during weekdays than on Sunday and holidays. This indicates the HF components are closely related to human activities. On the contrary, daily and weekly variations were not clear in the LF components while they showed seasonal variations with its maximum during the winter and a good correlation with significant wave height. Therefore, we interpret the mechanism of LF components is closely related to natural phenomena such as sea. The amplitude of LF components decreased as an exponential function of the distance to the center of typhoons. The exponential index of -0.76 suggested that ambient seismic noise included both surface and body waves. Peak frequencies of the PSD curves were near 0.34 Hz indicating the double frequency. No temporal variation in the peak frequency was clearly noticed.

Double Integration of Measured Acceleration Record using the Concept of Modified Wavelet Transform (수정된 웨이블릿 변환 개념을 이용한 계측 가속도 기록의 이중 적분법)

  • 이형진;박정식
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.11-17
    • /
    • 2003
  • It is well known that the double integration of measured acceleration records is one of the most difficult signal processing, particularly in the measurements on civil engineering structures, The measured accelerations of civil engineering structures are usually non-stationary and contain non-gaussian low-frequency noises, which can be significant causes of numerical instabilities in double Integration, For the de-noising of this kind of signals, wavelet transform can be very effective because of its inherent processing features for non-stationary signals, In this paper, the de-noising algorithm for the double integration is proposed using the modified wavelet transform, which is extended version of ordinary wavelet transform to process non-gaussian and low-frequency noises, using the median filter concept, The example studies show that the integration can be improved by the proposed method.

Comparison of Backgroud Noise Characteristics between Surface and Borehole Station of Hwacheon (화천 지진관측소 지표와 시추공의 배경잡음 특성 비교)

  • Yun, Won Young;Park, Sun-Cheon;Kim, Ki Young
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.4
    • /
    • pp.203-210
    • /
    • 2013
  • To look into site characteristics of the Hwacheon borehole seismic station, we analyzed property of earthquake and microtremor recorded on surface and borehole seismometers. Acoording to analysis result of microtremor, the surface-to-borehole energy ratio was approximately 15 times greater during the daytime than during the nighttime, and the surface-to-borehole ratios of spectral amplitudes as frequency increases. For earthquake data, amplitude spectra and dominant frequency were computed using surface and borehole data. As a result, small earthquakes with short distance recorded on surface seismometer peaked at 8 Hz, 46 Hz. This result corresponds to resonance frequencies (7.4 Hz, 46 Hz) calculated by H/V spectral ratio. We confirmed amplification effect by site characteristics of overburden. Background noise level was approximately 20,000 times smaller at borehole seismic station than surface seismic station. These results provide strong evidence for the superior recording of earthquakes using borehole seismometers instead of surface seismometers.

The Dynamic Basement Amplification Characteristics of a Dam Site using a Reference Site Method (기준관측소 방법을 이용한 댐체 기반암의 동적 지반증폭특성)

  • Wee, Soung-Hoon;Kim, Jun-Kyoung;Yoo, Seong-Hwa
    • Journal of the Korean earth science society
    • /
    • v.38 no.2
    • /
    • pp.161-171
    • /
    • 2017
  • Observed ground motions are composed of three factors such as, seismic source, attenuation, and site amplification effect. Among them, the site amplification characteristics should be considered significantly when estimating seismic source and attenuation characteristics with more confidence. The site effect is also necessary when estimating not only seismic hazard in seismic design engineering but also rock mechanical properties. This study uses the method of H/V spectral ratio of observed ground motion between target site and reference site called a reference site method. In addition to using the vertical Fourier spectrum of the reference site, we try out the horizontal Fourier spectrum as a new method in this study. We analyze H/V spectral ratio of six ground motions respectively, observed at four sites close to Yedang Reservoir. We then compare site amplification effects at each site using 3 kinds of seismic energies including S waves, Coda waves energy, and background noise. The results suggest that each site showed similar site amplification patterns in S waves and Coda waves energy. However, the site amplification of background noise shows much different characteristics from those of S waves and Coda wave energy, which suggests that the background noises at each site have their own developing mechanism. Each station shows its own characteristics of specific resonance frequency and site amplification properties in low, high and specific resonance frequency ranges. Comparison of the method used in this study to the others that used different methods can provide us with more information about the dynamic amplification of a site characteristics and site classification.

A Recommendation of the Technique for Measurement and Analysis of Passive Surface Waves for a Reliable Dispersion Curve (신뢰성 있는 분산곡선의 결정을 위한 수동표면파 측정 및 분석기법의 제안)

  • Yoon, Sung-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.2
    • /
    • pp.47-60
    • /
    • 2007
  • Conventional active surface wave measurements performed using a transient or continuous source are often limited in the maximum depth of penetration due to the difficulty of generating low-frequency energy with reasonably portable sources. This limitation may inhibit accurate seismic site response calculations because of the inability to define deeper subsurface structure. By measuring surface wave generated by passive sources including microtremors and cultural noise, it is possible to overcome this problem and develop soil stiffness profiles to much larger depth. Reliability of dispersion estimates from the passive surface wave measurements is critical to present reliable shear wave velocity profiles and can be improved by the measurements and analyses of passive surface waves based on correct understanding of systematic errors included in passive dispersion data. In this study, the systematic errors caused by poor wavenumber resolution and energy leakage into sidelobes in passive tests are mainly explored. Recommendations for reliable passive surface wave measurements and dispersion estimates are presented and illustrated at a site in San Jose, California, U.S.

Installation and Data Analysis of Superconducting Gravimeter in MunGyung, Korea; Preliminary Results (문경 초전도 중력계 설치 및 기초자료 분석)

  • Kim, Tae-Hee;Neumeyer, Juergen;Woo, Ik;Park, Hyuck-Jin;Kim, Jeong-Woo
    • Economic and Environmental Geology
    • /
    • v.40 no.4
    • /
    • pp.445-459
    • /
    • 2007
  • Superconducting Gravimeter(SG) was installed and has been successfully operated at MunGyung, Kyungsang province in Korea in March 2005. It was registered as the 21st observatory of the Global Geodynamics Project. Since SG can precisely measure the gravity variations below the 1mHz frequency band, it has the outstanding capability to sense and resolve many different periodic gravity components from each other. From the raw data collected between 18 March 2005 and 21 February 2006 diurnal and semi-diurnal tidal band's residual gravity components were analyzed. During this process, the instrumental noises, air pressure, and ground water corrections were carried out. Values of $-3.18nm/s^2/hPa\;and\;17nm/s^2/m$ were used respectively in the air pressure and groundwater corrections. Hartmann-Wenzel and Whar-Dehant Earth tide models were adopted to compute the residual gravity for Q1, O1, P1, K1, M2, N2, S2, K2 tidal bands. For the ocean loading correction, SCW80, FES952, and FES02 models were used and compared. As a result, FES02 ocean loading model has shown the best match for the data processing at MunGyung SG MunGyung SG gravity was compared with GRACE satellite gravity. The correlation coefficient between the two gravity after groundwater correction was 0.628, which is higher than before ground water correction. To evaluate sensitivity at MunGyung SG gravity statition, the gravity data measured during 2005 Indodesian earthquake was compared with STS-2 broad band seismometer data. The result clearly revealed that the SG could recorded the same period of earthquake with seismometer event and a few after-shock events those were detected by seismometer.