Installation and Data Analysis of Superconducting Gravimeter in MunGyung, Korea; Preliminary Results

문경 초전도 중력계 설치 및 기초자료 분석

  • Kim, Tae-Hee (Department of Geoinformation Engineering, Sejong University) ;
  • Neumeyer, Juergen (GeoForschungZentrum Potsdam, Dept. of Geodesy & Remote Sensing) ;
  • Woo, Ik (Ocean System Engineering, Kunsan National University) ;
  • Park, Hyuck-Jin (Department of Geoinformation Engineering, Sejong University) ;
  • Kim, Jeong-Woo (Department of Geoinformation Engineering, Sejong University)
  • 김태희 (세종대학교 지구정보공학과) ;
  • ;
  • 우익 (군산대학교 해양시스템공학부) ;
  • 박혁진 (세종대학교 지구정보공학과) ;
  • 김정우 (세종대학교 지구정보공학과)
  • Published : 2007.08.28

Abstract

Superconducting Gravimeter(SG) was installed and has been successfully operated at MunGyung, Kyungsang province in Korea in March 2005. It was registered as the 21st observatory of the Global Geodynamics Project. Since SG can precisely measure the gravity variations below the 1mHz frequency band, it has the outstanding capability to sense and resolve many different periodic gravity components from each other. From the raw data collected between 18 March 2005 and 21 February 2006 diurnal and semi-diurnal tidal band's residual gravity components were analyzed. During this process, the instrumental noises, air pressure, and ground water corrections were carried out. Values of $-3.18nm/s^2/hPa\;and\;17nm/s^2/m$ were used respectively in the air pressure and groundwater corrections. Hartmann-Wenzel and Whar-Dehant Earth tide models were adopted to compute the residual gravity for Q1, O1, P1, K1, M2, N2, S2, K2 tidal bands. For the ocean loading correction, SCW80, FES952, and FES02 models were used and compared. As a result, FES02 ocean loading model has shown the best match for the data processing at MunGyung SG MunGyung SG gravity was compared with GRACE satellite gravity. The correlation coefficient between the two gravity after groundwater correction was 0.628, which is higher than before ground water correction. To evaluate sensitivity at MunGyung SG gravity statition, the gravity data measured during 2005 Indodesian earthquake was compared with STS-2 broad band seismometer data. The result clearly revealed that the SG could recorded the same period of earthquake with seismometer event and a few after-shock events those were detected by seismometer.

2005년 3월 경상북도 문경에 설치된 초전도 중력계가 Global Geodynamics Project에 세계 21번째 관측소로 등록되어 현재 정상 운영 중에 있다. 미세한 중력변화를 1mHZ 이하의 저주파 영역에서 $10^{-2}nm/s^2$ 수준의 뛰어난 분해능으로 측정하는 초전도 중력계는 지구 중력의 다양한 주기의 지구중력변화를 감지하고 분석하는데 매우 효과적이다. 문경 초전도 중력 자료의 기초 분석을 위하여 2005년 3월 18일 부터 2006년 2월 21일 사이의 자료를 이용하여 일일주기와 반일주기 성분의 잔여중력을 계산하였다. 기계적 잡음을 제거한 후 기압 및 지하수 보정을 실시하였고, Hartmann-Wenzel 모델과 Whar-Dehant 모델을 이용하여 지구 조석을 보정하였으며 SCW80, FES952, FES2002 해양모델을 이용하여 ocean loading의 영향을 보정하였다. 초전도 중력자료의 신뢰도 검증을 위해 GRACE 인공위성에서 관측된 중력과 비교한 결과, 0.63의 상관관계를 보였다. 한편 2005년 발생한 인도네시아의 수마트라 지진자료를 광대역 지진계(STS-2)자료와 비교한 바, 지진계에서 관측되는 지진신호 및 여진이 감지됨을 확인할 수 있었다.

Keywords

References

  1. Crossley, D. and Hinderer, J. (2005) Using SG arrays for Hydrology in Comparison with GRACE satellite Data, Korean J. Remote Sensing, v.21(1), p.31-49 https://doi.org/10.7780/kjrs.2005.21.1.31
  2. Crossley, D., Hinderer, J., Llubes, M., and Floosch, N. (2003) The potential of ground gravity measurements to validata GRACE data, Adavances in Geosciences, 1, p.1-7 https://doi.org/10.5194/adgeo-1-1-2003
  3. Crossley, D., Jenson, O.G. and Hinderer, J. (1995) Effective barometric admittance and gravity residuals, Physics of the Earth and Planetary Interiors, 90, p.221-241 https://doi.org/10.1016/0031-9201(95)05086-Q
  4. Dehant, V.(1987) Tidal parameters for an inelastic Earth. Physics of the Earth and Planetary Interiors, 49, p.97-116 https://doi.org/10.1016/0031-9201(87)90134-8
  5. Farrell, W.E. (1972) Deformation of the Earth by surface lads, Rev. Geophys, 10, p.761-797 https://doi.org/10.1029/RG010i003p00761
  6. GGP, http://www.eas.slu.edu/GGP/ggphome.html
  7. Goodkind, J. (1999) The superconducting gravimeter, Review of Scientific Instruments, 70, no.11
  8. GWR, http://www.gwrinstruments.com/index.html
  9. GWR Inc., (2003) Superconducting Gravimeters Operator's manual. 6264 Ferris Square, Suite D, San Diego, California 92121-3241, U.S.A
  10. Hartmann, T. and Wenzel H.-G. (1995) The HW95 tidal potential catalogue. Geophysical Research Letters, 22, no.24, p.3553-3556 https://doi.org/10.1029/95GL03324
  11. Hinderer, J. and Crossley, D. (2000) Time variations in gravity inferences on the earth's structure and dynamics, Surveys in Geophysics 21, p.1-45 https://doi.org/10.1023/A:1006782528443
  12. Hinderer, J. (2004) Scientific achievements from the first phase(1997-2003) of the Global Geodynamics Project using a worldwide network of superconductiong gravimeters, GGP report
  13. Kim (2005) Optimal Data Fusion of Geophysical and Geodetic Measurements for Geological Hazards Monitoring and Prediction, Geohazard information laborotary in Sejong University, Research report of national research laboratory
  14. Kim, J.W., Neumeyer, J.. Kim, T., Woo, I. and Park, H. (2006) First data analysis of MunGyung superconducting gravimeter in Korea, GGP Yena meeting presentation
  15. Kim, J.W., Jeon, J.S. and Lee, Y.S. (2005) Geohazard mornitoring with space and geophysical technology. Korean J. Remote Sensing, v.21(1), p.3-13
  16. Le Provost, C., F. Lyard, J. M. Molines, M. L. Genco, and F. Rabilloud. (1998) A hydrodynamic ocean tide model improved by assimilating a satellite altimeter-derived data set, J. Geophys. Res., 103, p.5513-5529 https://doi.org/10.1029/97JC01733
  17. Lefevre, F., Lyard, F.H., Le Provost, C., Schrarna, and E.J.O. (2002) A global tide finite element solution assimilating tide gauge and altimetric information. J. Atmos. Oceanic Technol., 19, p.1345-1356 https://doi.org/10.1175/1520-0426(2002)019<1345:FAGTFE>2.0.CO;2
  18. Loyer, S., Hinderer, J. and Boy, J.P. (1999) Determination of the gravimetric factor at the Chandler period from Earth's orientation data and superconducting gravimetry observations, Geophys. J. Int., vol.136, p.1-7 https://doi.org/10.1046/j.1365-246X.1999.00646.x
  19. McCarthy, D. and Petit, G. (2004) lERS Conventions (2003). IERS Technical Note 32, IERS Central Bureau, Frankfurt a.M., Germany
  20. Neumeyer, J., Barthelmes, F., Dierks, O., Flechtner, F., Harnisch M.&G., Hinderer, J., Imanishi, Y., Kroner, C., Muerers, B., Petrovic, S., Reigber, Ch., Schmidt, R., Schwintzer, P., Sun, H.-P. and Virtanen, H. (2006) Combination of temporal gravity variatins resulting from Superconducting Gravimeters recordings, GRACE satellite observations and global hydrology models, J. Geodynamics, J. Geodesy, 79(10-11), p.579-585
  21. Neumeyer, J. (2005) Efficiency of superconducting gravimeter observations and future prospects, Korean J. Remote Sensing, v.21(1), p. 15-29 https://doi.org/10.7780/kjrs.2005.21.1.15
  22. Neumeyer, J., Pino, J., Dierks O., Sun, H.P. and Pflug, H. (2005b) Improvement of ocean loading correction on gravity data with additional tide gauge measurements, J. Geodynamics, 40, p.104-111 https://doi.org/10.1016/j.jog.2005.07.012
  23. Neumeyer, J., Hagedoorn, J., Leitloff J. and Schmidt T. (2004) Gravity reduction in three dimensional atmospheric pressure data for precise ground gravity measurements, J. Geodynamics, 38, p.437-450 https://doi.org/10.1016/j.jog.2004.07.006
  24. Officer, C.G. (1974) Introduction to Theoretical Geophysics, Springer
  25. Richter, B., Wenzel, H.-G., Zurn, W. and Klopping, F. (1995) From chadler wobble to free oscillations: comparison of cryogenic gravimeters and other instruments in a wide period range. Phys. Earth Planet. Interiors, 91, p.131-148 https://doi.org/10.1016/0031-9201(95)03041-T
  26. Rosat, S., Hinderer, J. and Rivera. L. (2003) First observation of 2S1 and study of the splitting of the football mode $_{0}S_{2}$ after the June 2001 Peru event of magnitude 8.4, Geophy. Res. Lett., 30, 21, 2111, doi: 10.1029/2003GL0l8304
  27. Sato, T., Tamura, Y., Higashi, T., Takemoto. I., Nakagawa, I., Morimoto, N., Fukuda, Y., Segawa, J. and Seama, N. (1994) Resonance parameters of nearly diurnal freecore nutation measured with three superconducting gravimeters in Japan, J. Geomag. Geoelectr. 46, p.571-586 https://doi.org/10.5636/jgg.46.571
  28. Schwiderski, E. W. (1980) On charting global ocean tides, Rev. Geophysis., 18, p.23-268
  29. Sun, H.-P., Hsu, H.-T., Jentzsch, G. and Xu, J.-Q. (2002) Tidal gravity observations obtained with a superconducting gravimeter at Wuhan/China and its application to geodynamics, J. Geodynamics, 33, p.187-198 https://doi.org/10.1016/S0264-3707(01)00063-1
  30. Torge, W. (1989) Gravimetry, Walter de Gruyter
  31. Torge, W. (2001) Geodesy, Walter de Gruyter
  32. Wahr, J. M. (1974) Body tides on an elliptical, rotating, elastic and oceanless Earth. Geophysical J. Royal Astronomical Society, 64, p.677-703
  33. Wenzel, H.-G. (1996) The nanogal software: Earth tide data processing package ERERNA 3.30. Bulletin d'Informations Marees Terrestres, 124, p.9425-9439
  34. Widmer-Schnidrig, R. (2003) What can Superconducting Gravimeters contrubute to normal mode seismology? Bull. Seism. Soc. Amer., 93(3), p.1370-1380 https://doi.org/10.1785/0120020149
  35. Zerbini, S., Richter, B., Negusini, M., Romagnoli, M., Simon, D., Domenichini, F., Schwahn, W. (2001) Height and gravity variations by continuous GPS, gravity and environmental parameter observations in the southern Po Plain, near Bologna, Italy. Earth and Planetary Science Letters, v. 192. p.267-279 https://doi.org/10.1016/S0012-821X(01)00445-9