• Title/Summary/Keyword: 저레이놀즈수 유동

Search Result 59, Processing Time 0.034 seconds

Numerical Investigation of Aerodynamic Characteristics around Micro Aerial Vehicle using Multi-Block Grid (MULTI-BLOCK 격자 기법을 이용한 초소형 비행체 주위 공력 특성 해석)

  • Kim,Yeong-Hun;Kim,U-Rye;Lee,Jeong-Sang;Kim,Jong-Am;No,O-Hyeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.8-16
    • /
    • 2003
  • Aerodynamic characteristics over Micro Aerial Vehicle(MAV) in low Reynolds number regime are numerically studied using 3-D unsteady, incompressible Navier-Stokes flow solver with single partitioning method for multi-block grid. For more efficient computation of unsteady flows, this flow solver is parallel-implemented with MPl(Message Passing Interface) programming method. Firstly, MAV wing with not complex geometry is considered and then, we analyze aerodynamic characteristics over full MAV configuration varying the angle of attack. Present computational results show a better agreement with the experimental data by MACDL(Micro Aerodynamic Control and Design Lab.), Seoul National University. We can also find the conceptually designed MAV by MACDL has the static stability.

Numerical Study on the Similarity between the Fully Developed Turbulent Flow in an Orthogonally Rotating Square Duct and that in a Stationary Curved Square Duct (수직축을 중심으로 회전하는 직관과 정지한 곡관 내에서의 완전 발달된 난류 유동의 유사성에 관한 수치적 연구)

  • Lee, Gong-Hui;Baek, Je-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.5
    • /
    • pp.731-740
    • /
    • 2001
  • A numerical study on the quantitative analogy between the fully developed turbulent flow in a straight square duct rotating about an axis perpendicular to that of the duct and that in a stationary curved duct of square cross-section is carried out. In order to clarify the similarity of the two flows, dimensionless parameters K(sub)TR=Re(sup)1/4/√Ro and Rossby number, Ro, in a rotating straight duct flow were used as a set corresponding to K(sub)TC=Re(sup)1/4/√λ and curvature ratio, λ, in a stationary curved duct flow so that they have the same dynamical meaning as those of the fully developed laminar flows. For the large values of Ro or λ, it is shown that the flow field satisfies the asymptotic invariance property, that is, there are strong quantitative similarities between the two flows such as flow patterns and friction factors for the same values of K(sub)TR and K(sub)TC.

The study of predictive performance of low Reynolds number turbulence model in the backward-facing step flow (후방계단유동에 대한 저레이놀즈 수 난류모형의 예측성능에 관한 연구)

  • Kim, Won-Gap;Choe, Yeong-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1661-1670
    • /
    • 1996
  • Incompressible flow over a backward-facing step is computed by low Reynolds number turbulence models in order to compare with direct simulation results. In this study, selected low Reynolds number 1st and 2nd (Algebraic Stress Model : ASM) moment closure turbulence models are adopted and compared with each other. Each turbulence model predicts different flow characteristics, different re-attachment point, velocity profiles and Reynolds stress distribution etc. Results by .kappa.-.epsilon. turbulence models indicate that predicted re-attachment lengths are shorter than those by standard model. Turbulent intensity and eddy viscosity by low Reynolds number .kappa.-.epsilon. models are still greater than DNS results. The results by algebraic stress model (ASM) are more reasonable than those by .kappa.-.epsilon. models. The convective scheme is QUICK (Quadratic Upstream Interpolation for Convective Kinematics) and SIMPLE algorithm is adopted. Reynolds number based on step height and inlet free stream velocity is 5100.

A Numerical Study on the Flow of a Model Intake Port Using Low Reynolds Number (저 레이놀즈수 k-ε난류모형에 의하 축대칭 모형포트 유동의 수치해석적 연구)

  • Hong, Y.J.;Kim, C.S.;Choi, Y.D.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.26-37
    • /
    • 1994
  • In this study, flow of a model intake port/valve system is analyzed by using low Reynolds number $k-{\varepsilon}$ model. Discharge coefficient was obtained from computational results for the various cases of valve lifts. Discharge coefficient becomes maximum when the valve lift is 20mm, and does not increase or decrease in proportional to valve lift. Most of pressure drop and production of turbulent kinetic energy occur at the edge points of the valve and the valve seat Thus, in order to improve discharge coefficient, rounding of edge points in valve and valve seat is recommended. As valve lift is increased, the velocity of the intake jet in the valve passage decreases, and the direction of the jet is more inclined toward the valve seat.

  • PDF

Numerical computation of turbulent flow in a square sectioned $180^{\circ}$ bend by low-Reynolds-number second moment turbulence closure (저레이놀즈수 2차 모멘트 난류모형에 의한 정사각단면의 $180^{\circ}$ 곡덕트 난류유동의 수치해석)

  • Sin, Jong-Geun;Choe, Yeong-Don
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2650-2669
    • /
    • 1996
  • A new low Reynolds number nonlinear second moment turbulence closure was introduced to analyze a square sectioned 180.deg. bend flow. Inclusion of nonlinear return to isotropy term and cubic mean pressure strain term has brought out a marked improvement in the level of agreement with measured velocity profiles. Optimization of present closure was performed by comparison of computed velocity profiles with the experimental ones with variation of nonlinear return to isotropy term and quadratic and cubic pressure-strain model. Progressive vortex breakdown due to the interaction of primary and secondary flows was well captured by using the optimized second moment turbulence closure.

Numerical Study on Turbulent Flow in a Conical Diffuser (원추형 디퓨져 내의 난류운동에 관한 수치해석적 연구)

  • 강신형;최영석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1971-1978
    • /
    • 1992
  • A turbulent flow in a conical diffuser with total divergence angle of 8.deg. was numerically studied. The low Reynolds number k-.epsilon. model(Launder-Sharma model) was adopted to simulate the turbulence. The continuity and time averaged Navier-Stokes equations in a nonorthogonal coordinate system were solved by a finite volume method based on the fully elliptic formulation. The low Reynolds number k-.epsilon. model reasonably simulates the pressure recovery and the mean velocity components. However, there are also considerable discrepancies between predicted and measured shear stress distribution on the wall and turbulent kinetic energy distributions. It is necessary to investigate the flow structure at the entry of the diffuser, numerically as well as experimentally.

Numerical Simulations of the Flowfield and Pollutant Dispersion over 2-D Bell-Shaped Hills (2차원 종형 언덕 주위의 유동 및 확산현상에 관한 수치해석 연구)

  • Park K.;Park W. G.
    • Journal of computational fluids engineering
    • /
    • v.3 no.1
    • /
    • pp.63-72
    • /
    • 1998
  • The numerical simulations of flowfield and pollutant dispersion over two-dimensional hills of various shapes are described. The Reynolds-averaged Wavier-Stokes equations and concentration diffusion equation based on the gradient diffusion theory have been applied to the atmospheric shear flow over the bell-shaped hills which are basic components of the complex terrain. The flow characteristics such as velocity profiles of the geophysical boundary layer, speed-up phenomena, mean pollutant concentration profiles are compared with experimental data to validate the present numerical procedure and it has been found that the present numerical results agree well with experiments and other numerical data. It has been also found that the distributions of ground level concentration are strongly influenced by the source location and height.

  • PDF

A low-Reynolds-number 4-equation heat transfer model for turbulent separated and reattaching flows (난류 박리 및 재부착 유동의 해석을 위한 저레이놀즈수 4-방정식 난류 열전달 모형의 개발)

  • Rhee Gwang-Hoon;Sung Hyung-Jin
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.37-42
    • /
    • 1995
  • In the present study, an improved version of 4-equation low-Reynolds-number 4-equation model is proposed. The equations of the temperature variance ($k_{\theta}$) and its dissipation rate(${\varepsilon}_{\theta}$) are solved, in concert with the equations of the turbulent kinetic energy(k) and its dissipation rate(${\varepsilon}$). In the present model, the near-wall effect and the non-equilibrium effect are fully taken into consideration. The validation of the model is then applied to the turbulent flow behind a backward-facing step and the flow over a blunt body. The predicted results of the present model are compared and evaluated with the relevant experiments.

  • PDF

Numerical analysis of drag reduction of turbulent flow in a pipe (원관내 난류의 저항감소현상에 대한 수치해석)

  • 홍성진;김광용;최형진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.6
    • /
    • pp.733-739
    • /
    • 1999
  • A modified low-Re $k-\varepsilon$ model is used for the calculation of drag-reducing turbulent flow by polymer injection in a pipe. With the viscoelastic model, molecular viscosity in the definition of turbulent viscosity is related to elongations viscosity of the solution to account for the effects of drag reduction. Finite volume method is used for the discretization, and power-law scheme is used as a numerical scheme. Computed dimensionless velocity profiles are in good agreements with the experimental data in case of low drag reductions. However, in case of high drag reductions, they deviate largely from the measurements in the central zone of the flow field.

  • PDF

Analysis of Turbulent flow using Pressure Gradient Method (압력구배기법을 이용한 난류 유동장 해석)

  • 유근종
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.2
    • /
    • pp.1-9
    • /
    • 1999
  • Applicability of the pressure gradient method which is formulated based on pressure gradient is verified against turbulent flow analysis. In the pressure gradient method, pressure gradient instead of pressure itself is obtained using continuity constraint. Since correct pressure gradient is found only when mass conservation is satisfied, pressure gradient method can reflect physics of flow field properly The pressure gradient method is formulated with semi-staggered grid system which locates each primitive variables on the same grid point but evaluates pressure gradient in-between. This grid system ensures easy programming and reflection of correct physics in analysis. For verifying applicability of this method, the pressure gradient method is applied to turbulent flow analysis with low Reynolds number $\kappa$-$\varepsilon$ model. Turbulent flows include fully developed channel flow, backward-facing step flow, and conical diffuser flow. Prediction results show that the pressure gradient method can be applied to turbulent flow analysis. However, the pressure gradient method requires somewhat long computation time. Proper way to find optimum under-relaxation factor, $\gamma$, is also need to be developed.

  • PDF