• Title/Summary/Keyword: 재조합

Search Result 1,977, Processing Time 0.031 seconds

Comparison of Marine Luminescence Bacteria and Genetically Modified Luminescence E. coli, for Acute Toxicity of Heavy Metals (재조합 발광대장균과 해양 발광 미생물을 이용한 중금속 급성독성평가)

  • Lee, Sang-Min;Bae, Hee-Kyung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.8
    • /
    • pp.900-906
    • /
    • 2005
  • The responses of two luminescence-based biosensors were studied on various heavy metals in aqueous solutions. One was recombinant E. coli ($DH5{\alpha}$/pSB311), genetically modified luminescence-based bacteria, and the other was Vibrio fisheri used for the LumisTox system. The recombinant E. coli was marked with the lux CDABE gene from multicopy plasmid, pACYC184, originally isolated from Photorhabdus luminescens. The $DH5{\alpha}$/pSB311 had a characteristic of no organic substrate for its luminescence reaction. Among the tested heavy metals Zinc and cadmium were less toxic than copper and mercury. The recombinant E. coli was more sensitive to toxicity of heavy metals than the LumisTox. The order of toxicity of the heavy metals to the recombinant E. coli was $Hg^{2+}>Cu^{2+}>Zn^{2+}>Cd^{2+}$. In case of the LumisTox, the order of the toxicity of heavy metals was $Hg^{2+}>Cu^{2+}>Cd^{2+}>Zn^{2+}$. The genetically modified luminescence-based biosensor offers a range of sensitive, rapid, and easy to use methods for assessing the potential toxicity of heavy metals in aqueous samples.

Genetic Analysis of the Ability of Callus Formation and Plant Regeneration in Seed Culture of Rice (벼의 종자배양에서 캘러스 형성과 식물체 재분화 능력의 유전)

  • 오명진;권용삼;손재근
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.2
    • /
    • pp.77-82
    • /
    • 2000
  • This study was conducted to determine the inheritance of the ability of callus formation and plant regeneration in seed cultures of rice. The culturabilities of three Japonica rices,'Chucheongbyeo', 'Nagdongbyeo', and 'Daeribbyeo 1', were higher than those of Tongil type cultivars, 'Milyang 23' and 'Samgangbyeo 'The frequency for callus growth in F₂ populations of the three crosses, 'Milyang 23/Chucheongbyeo', 'Milyang 23/Daeribbyeo 1', and' Samgangbyeo/Nagdongbyeo', revealed a nearly normal distribution. The broad-sense heritability estimated from the ability of callus formation in the crosses were ranged from 83.8% to 90.1%. The frequency distribution of plant regenerability in F₂ population of 'Milyang 23/Daeribbyeo 1' showed a continuous variation. But the segregation mode of plant regenerability from seed-derived callus in the F₂ progenies of 'Milyang 23/Chucheongbyeo' and 'Samgangbyeo/Nagdongbyeo' appeared to fit the expected 3 : 1 ratio for the high and low regenerability. These results suggest that the high plant regenerability of 'Chucheongbyeo' and 'Nagdongbyeo' was regulated by a single dominant gene.

  • PDF

Depth-Conversion in Integral Imaging Three-Dimensional Display by Means of Elemental Image Recombination (3차원 영상 재생을 위한 집적결상법에서 기본영상 재조합을 통한 재생영상의 깊이 변환)

  • Ser, Jang-Il;Shin, Seung-Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.1
    • /
    • pp.24-30
    • /
    • 2007
  • We have studied depth conversion of a reconstructed image by means of recombination of the elemental images in the integral imaging system for 3D display. With the recombination, depth conversion to the pseudoscopic, the orthoscopic, the real or the virtual as well as to arbitrary depth without any distortion is possible under proper conditions. The conditions on the recombinations for the depth conversion are theoretically derived. The reconstructed images using the converted elemental images are presented.

Development of a novel genetic assay for telomere recombination in Saccharomyces cerevisiae (효모에서 텔로미어 재조합을 관찰하기 위한 새로운 유전학적 연구방법의 개발)

  • Kim, Min-Kyu;Bae, Sung-Ho
    • Korean Journal of Microbiology
    • /
    • v.52 no.1
    • /
    • pp.116-119
    • /
    • 2016
  • Stable maintenance of telomere is required for cell proliferation and survival. Although telomerase is the primary means for telomere maintenance, recombination is another important pathway to maintain telomeres. In this study, we developed a genetic assay for telomere recombination using the internal $TG_{1-3}$ repeats present in subtelomeric regions of yeast. The recombination frequencies were dependent on the presence of the internal $TG_{1-3}$ repeats. PCR amplification of the regions near URA3 and CAN1 markers using genomic DNA isolated from $FOA^rCan^r$ colonies indicated that each isolate had lost the chromosome end including the markers. In addition, the recombination frequencies increased with longer internal $TG_{1-3}$ repeats. Our results suggest that the $FOA^rCan^r$ colony formation is the consequence of recombination between the internal and terminal $TG_{1-3}$ repeats.

Identification of Meiotic Recombination Intermediates in Saccharomyces cerevisiae (효모 감수분열과정에서의 유전자 재조합 기전 특이적 DNA 중간체의 구조 변화)

  • Sung, Young Jin;Yoon, Sang Wook;Kim, Keun Pil
    • Korean Journal of Microbiology
    • /
    • v.49 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • During meiosis, genetic recombinants are formed by homologous recombination accompanying with the programmed double-strand breaks (DSBs) and strand exchanges between homologous chromosomes. The mechanism is generated by recombination intermediates such as single-end invasions (SEIs) and double-Holliday junctions (dHJs), and followed by crossover (CO) or non-crossover (NCO) products. Our study was focused on the analysis of meiotic recombination intermediates (DSBs, SEIs, and dHJs) and final recombination products (CO and NCO). We identified these meiotic recombination intermediates using DNA physical analysis under HIS4LEU2 "hot spot" system in budding yeast, Saccharomyces cerevisiae. For DNA physical analysis, when the hot spot locus is recognized by restriction enzyme from synchronous meiotic cells, the fragmented DNA that are forming recombination intermediates can be detected and quantified through Southern hybridization analysis. Our study suggests that this system can analyze the structural change of recombination intermediates during DSB-SEI transition, double-Holiday junctions and crossover/non-crossover products in meiosis.

Involvement of Brca1 in DNA Interstrand Cross-link Repair Through Homologous Recombination-independent Process (재조합 비의존적 경로를 통한 DNA 사슬간 교차결합 복구에의 Brca1단백질의 기능)

  • Yun, Jean-Ho
    • Journal of Life Science
    • /
    • v.15 no.4 s.71
    • /
    • pp.542-547
    • /
    • 2005
  • Hypersensitivity of cells lacking Brcal to DNA interstrand .ross-link (ICL) agents such as cisplatin and mitomycin C(MMC) implicates the important role of Brcal in cellular response following ICL treatment. Brca1 plays an essential role in DNA double-strand break (DSB) repair through homologous recombination (HR)-dependent and -independent process. Recently, our group has been reported that Brca1 involves in cellular ICL response through HR-dependent repair process (Yun J. et at., Oncogene 2005). In this report, the involvement of Brca1 protein in HR-independent repair process is examined using isogenic $p53^{-/-}\;and\;p53^{-/-}\;Brcal^{-/-}$ mouse embryonic fibroblast (MEF) and psoralen cross-linked reporter reactivation assay. Brcal-deficient MEFs showed significantly low HR-independent repair activity compare to Brca1-proficient MEFs. Hypersensitivity to MMC and ICL reporter repair activity were restored by the reconstitution of Brca1 expression. Interestingly, MEFs expressing exon 11-deleted isoform of Brca1 $(Brca1^{\Delta11/\Delta11})$ showed high resistance to MMC and ICL reporter repair activity comparable to Brca1-reconstituted MEFs. Taken together, these results suggest that Brca1 involves in ICL repair through not only HR-dependent process but also HR-independent process using N-terminal RINC finger domain or C-terminal BRCT domain rather than exon 11 region which mediate interaction with Rad50.

재조합 대장균에 의한 유청으로부터 Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) 합성

  • Kim, Beom-Su;Lee, Sang-Yeop
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.321-324
    • /
    • 2001
  • Two recombinant Escherichia coli strains, GCSC6576 harboring a plasmid pSYL107 containing the Ralstonia eutropha polyhyclroxyalkanoate (PHA) biosynthesis genes and a fadR atoC mutant LS5218 harboring a plasmid pJC4 containing the Alcaligenes latus PHA biosynthesis genes were compared for their ability to synthesize poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] from whey as the sale carbon source. With the pH-stat fed-batch culture of E. coli LS5218, 、 ,ve obtained a cell concentration, a P(3HB-co-3HV) concentration. a P(3HB-co-3HV) content, and a 3HV fraction of 31.8 g/L, 10.6 g/L, 33.4 wt%. and 6.26 mol%, respectively at 39 h.

  • PDF

Effect of Acetic Acid Formation and Specific Growth Rate on Productivity of Recombinant Escherichia coli Fed-Batch Fermentation (초산 생성 및 비성장속도가 재조합 대장균 유가식 발효의 생산성에 미치는 영향)

  • 구태영;박태현
    • KSBB Journal
    • /
    • v.10 no.4
    • /
    • pp.455-460
    • /
    • 1995
  • Specific growth rate was controlled for the repression of acetic acid formation in the fed-batch fermentation of recombinant Escherichia coli. With controlled specific growth rate, we studied the effect of the specific growth rate on cell growth, glucose consumption, acetic acid formation, and the expression of recombinant protein (${\beta}$-lactamase). High specific growth rate caused the accumulation of glucose and acetic acid, and lowered the production of recombinant protein. However, the addition of methionine recovered the gene expression by alleviating the negative effect of acetic acid at high specific growth rate.

  • PDF

Analysis of Efficiency of Recombinant pOPINEneo-3C-GFP Vector with p53 Tumor Suppression Gene Inserted (p53 암억제 유전자가 삽입된 재조합 pOPINEneo-3C-GFP 벡터의 효율 분석)

  • Sa, Young-Hee;Choi, Chang-Shik;Lee, Ki Hwan;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.533-536
    • /
    • 2019
  • Recombinant baculoviruses are widely used to express heterologous genes in cultured insect cells. Recombinant baculoviruses can serve as gene-transfer vectors for expression of recombinant proteins in a wide range of mammalian cell types. Baculovirus system has significant benefits in view of safety, large-scale, and high level of gene expression. In this study, baculoviral vectors which were reconstructed from pOPINEneo-3C-GFP vector, were recombined with cytomegalovirus (CMV) promoter, green fluorescent protein (GFP), and p53 with NcoI and XhoI. These recombinant vectors were infected with various cells and cell lines. The baculovirus vector thus developed was analyzed by comparing the metastasis and expression of the recombinant genes with conventional vectors. These results suggest that the baculovirus vector has higher efficiency in metastasis and expression than the control vector. This work was supported by a grant from Mid-Career Researcher Program(NRF-2016R1A2B4016552) through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(MSIP).

  • PDF

Production of ${\gamma}$-Glutamylcysteine by Immobilized Mixed Microbial System of Recombinant E. coli and Yeast (재조합 대장균과 효모의 고정화 혼합세포계에 의한 ${\gamma}$-Glutamylcysteine 생산)

  • 김원근;구윤모
    • KSBB Journal
    • /
    • v.10 no.3
    • /
    • pp.249-256
    • /
    • 1995
  • ${\gamma}$-Glutamylcysteine production by the immobilized microbial system of recombinant Escherichia coli and yeast was investigated. ${\gamma}$-Glutamylcysteine was synthesized from L-glutamic acid and L-cysteine in the presence of ATP by the reaction catalyzed by ${\gamma}$-glutamylcysteine synthetase. An immobilized microbial cell system was developed for the efficient ${\gamma}$-glutamylcysteine production. Recombinant Escherichia coli and yeast were immobilized by alginate. Production of ${\gamma}$-glutamylcysteine was better with the recombinant Escherichia coli for both the synthesis of ${\gamma}$-glutamylcysteine and the ATP regeneration than the mixed system of recombinant Escherichia coli and yeast. The proper radio of recombinant Escherichia coli to yeast was experimentary observed to be 1:4 in the mixed system. Although the immobi1ized system had the slower reaction rate, its reaction stability was increased by 10%.

  • PDF