• Title/Summary/Keyword: 재조합단백질

Search Result 447, Processing Time 0.025 seconds

Protective Efficacy of Recombinant Proteins Adenylate Kinase, Nucleoside Diphosphate Kinase, and Heat-Shock Protein 70 against Mycobacterium tuberculosis Infection in Mice (유전자 재조합 단백질 Adenylate Kinase, Nucleoside Diphosphate Kinase와 Heat-Shock Protein 70의 결핵균에 대한 방어면역효능 분석)

  • Lee, Seung-Heon;Lee, Eun-Gae;Kim, Su-Yeon;Cho, Sang-Nae;Park, Young-Kil;Bai, Gill-Han
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.2
    • /
    • pp.142-152
    • /
    • 2005
  • Background : Priming and boosting vaccination strategy has been widely explored for new vaccine development against tuberculosis. As an effort to identify other vaccine candidates, this study was initiated to evaluate protective efficacy of adenylate kinase (AK), nucleoside diphosphate kinase (NdK), and heat shock protein 70 (Hsp70) of Mycobacterium tuberculosis. Method : M. tuberculosis genes encoding AK, NdK, and Hsp70 proteins were amplified by PCR and cloned into E. coli expression vector, pQE30. Recombinant AK, NdK, and Hsp70 was purified through Ni-NTA resin. To evaluate immune responses, we performed enzyme-linked immunosorbent assay (ELISA) for IgG isotype and $IFN-{\gamma}$ after mice were immunized subcutaneously with recombinant proteins delivered in dimethyl dioctadecylammonium bromide (DDA). Immunized- and control groups were challenged by aerosol with M. tuberculosis. The spleens and lungs of mice were removed aseptically and cultured for CFU of M. tuberculosis. Result : Vaccination with recombinant proteins AK, NdK, and Hsp70 delivered in DDA elicited significant level of antibody and $IFN-{\gamma}$ responses to corresponding antigens but no protective immunity comparable to that achieved with Mycobacterium bovis BCG. Conclusion : Recombinant proteins AK, NdK, and Hsp70 do not effectively control growth of M. tuberculosis in mice when immunized with DDA as an adjuvant.

Endoplasmic Reticulum Signaling for Recombinant-protein Production (재조합 단백질 생산을 위한 소포체 신호전달)

  • Goo, Tae-Won;Yun, Eun-Young;Kang, Seok-Woo;Kwon, Ki-Sang;Kwon, O-Yu
    • Journal of Life Science
    • /
    • v.17 no.6 s.86
    • /
    • pp.847-858
    • /
    • 2007
  • The endoplasmic reticulum (ER) is an important intracellular organelle for folding and maturation of newly synthesized transmembrane and secretory proteins. The ER provides stringent quality control systems to ensure that only correctly folded proteins exit the ER and unfolded or misfolded proteins are retained and ultimately degraded. The ER has evolved stress response both signaling pathways the unfolded protein response (UPR) to cope with the accmulation of unfolded or misfolded proteins and ER overload response (EOR). Accumulating evidence suggests that, in addition to responsibility for protein processing, ER is also an important signaling compartment and a sensor of cellular stress. In this respect, production of bio-functional recombinant-proteins requires efficient functioning of the ER secretory pathway in host cells. This review briefly summarizes our understanding of the ER signaling developed in the recent years to help of the secretion capacities of recombinant cells.

Strain Development for the Over-production of Alkaline Protease from Vibrio metschnikovii by Molecular Evolution (분자진화 기술을 통한 Vibrio metschnikovii 유래 고활성 알칼리성 단백질 분해효소 생산균주 개발)

  • Shin, Yong-Uk;Lee, Gwa-Soo;Jo, Jae-Hyung;Lee, Hyune-Hwan
    • Korean Journal of Microbiology
    • /
    • v.46 no.4
    • /
    • pp.383-388
    • /
    • 2010
  • Alkaline protease-overproducing strains of Vibrio metschnikovii were developed by using the molecular evolution from the classical mutants V. metschnikovii L12-23, N4-8, and KS1. Each vapK (Vibrio alkaline protease K) was obtained from the genomic DNAs of mutants by PCR to carry out the DNA shuffling. The modified vapK-1 obtained by DNA shuffling was used again as a template for the error-prone PCR to make the vapK-2. Both genes were cloned in the plasmid pKF3 to construct the recombinant plasmids which have one or two copies of the modified genes. The recombinant plasmids were back-transformed to V. metschnikovii KS1 to construct recombinant V. metschnikovii that expresses the alkaline protease. About 3.9-fold more protease activity was measured in the strain which has the plasmid containing two copies of vapK-2 when compared to strain KS1. When compared to wild type V. metschnikovii RH530, 43-fold more activity was achieved. Comparison of amino acids among vapK, vapK-1, and vapK-2 revealed that the active sites was highly conserved and not changed. However, many amino acids except the active sites were changed. These results suggested that the changes in amino acids might play an important role in the increase of protease activity by allowing the easy access of substrate to active sites of the protease. The fermentation of alkaline protease from the V. metschnikovii KS1 harboring the plasmid that contains two copies of vapK-1 showed the possibility of this strain to be used as industrial producer.

Production and Characterization of Monoclonal Antibodies Specific to PAT Protein Expressed in Genetically Modified Herbicide-Resistance Maize (제초제 내성 유전자 변형 옥수수 중 PAT단백질에 특이한 단크론성 항체의 생산과 특성 확인)

  • Kim, Sol-A;Lee, Jeong-Eun;Shim, Won-Bo;Kang, Sung-Jo;Chung, Duck-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.3
    • /
    • pp.193-199
    • /
    • 2018
  • In this study, PAT protein of genetically modified maize was prepared from the recombinant E. coli strain BL21 (DE3), and mice were immunized with the recombinant PAT protein. After cell fusion and cloning, two hybridoma cells (PATmAb-7 and PATmAb-12) were chosen since the monoclonal antibodies (Mabs) produced by them were confirmed to be specific to PAT protein in the indirect enzyme-linked immunsorbent assay (ELISA) and western blot tests. There were no cross-reactions of either Mabs to other GM proteins or to the extracts of non-GM maize. The ELISA based on the PATmAb-7 can sensitively detect 0.3 ng/g PAT protein in corn. These results indicate that the developed Mabs can be used as bio-receptors in the development of immunosensors and biosensors for the rapid and simple detection of GM corn adulterated in foods.

Transfection and Expression of Reconstructed Genes within Baculoviral Vectors (Baculovirus 벡터내 재구성된 유전자의 전이와 발현)

  • Sa, Young-Hee;Choi, hang-Shik;Lee, Ki Hwan;Hong, Seong-Karp
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.588-591
    • /
    • 2018
  • Baculovirus was originally isolated from the alfalfa looper and contains a 134-kbp genome with 154 open reading frames (ORF). The major capsid protein VP39 together with some minor proteins forms the nucleocapsid ($21nm{\times}260nm$) that encloses the DNA with p6.9 protein. They are double-stranded, circular, supercoiled DNA molecules in a rod-shaped capsid. Wild-type baculoviruses exhibit both lytic and occluded life cycles that develop independently throughout the three phases of virus replication. Recombinant baculoviruses can transfer their vectors and express their recombinant proteins in a wide range of mammalian cell types. Especially, inclusion of a dominant selectable marker in these baculoviral vectors can express diverse recombinant genes in many cells. Baculoviral vectors were reconstructed with cytomegalovirus (CMV) promoter,uroplakin II promoter, polyhedron promoter, vesicular stomatitis virus G (VSVG), enhanced green fluorescent protein (EGFP), protein transduction domain (PTD) gene and so on. These reconstructed vectors were infected into various cell and cell lines. We performed transfection and expression of these recombinant vectors comparison with other control vectors. From this study, we knew that transfection and expression of these recombinant vectors have higher efficacy than any control vector. This work was supported by a grant from Mid-Career Researcher Program(NRF-2016R1A2B4016552) through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning(MSIP).

  • PDF

The Dependency of the Expression Level of Recombinant Protein by the Drop of Alkali Consumption Rate after Induction (발현유도에 의한 알칼리 소비속도의 감소가 재조합 단백질 생산에 미치는 영향)

  • Hur, Won
    • KSBB Journal
    • /
    • v.21 no.4
    • /
    • pp.236-240
    • /
    • 2006
  • IPTG induction caused a sudden drop of alkali consumption rate during cultivation of a recombinant E. coli with ${\beta}$-galactosidase structural gene under T7 promoter on a plasmid. A series of batch cultivations showed the positive correlation of the decrease of alkali consumption and the level of expression. However, repeated IPTG induction did not cause any variation of alkali consumption rate. Supplementation of medium even at stationary phase enhanced the level of ${\beta}$-galactosidase expression. These results suggests that the drop of alkali consumption rate by IPTG induction represents the rate of expression.

유전공학기법을 이용한 새로운 당뇨병 치료제의 개발 연구

  • 이승엽;이추희;남두현
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.04a
    • /
    • pp.138-138
    • /
    • 1993
  • 인슈린 유사체를 유전공학적 방법으로 생산하여 새로운 당뇨병 치료제로써의 가능성을 타진한다. 인슈린 B 사슬의 C 말단 아미노산 codon을 threonine 대신을 methionine을 지령하도록 하고 여기에 인슈린 A사슬을 지령하는 염기를 바로 부착시켜, 이를 대장균에서 발현시키므로써 외사슬 인슈린 선구체를 제조하고, 이를 분리 정제한 다음 취화브롬 으로 절단하므로서 ($B^{30}$-homoserine) 인슈린을 제조한다. 1. 외사슬 인슈린 전구체 유전자를 합성한 후 대장균의 발현 운반체내 e-galactosidase 유전자와 융합시켜 도입하므로서 재조합된 융합단백질을 생산하였다. 2. 재조합 대장균을 발효한 후 urea 융합단백질을 분리하고 DEAE-Sephacel과 Sephadex G-200을 이용하여 순수 정제하였다.

  • PDF

Effect of Recombinant CagL Immunization on the Gastric Diseases Induced by Helicobacter pylori in Mongolian gerbils (CagL 재조합 단백질 접종후에 Mongolian gerbil에서 나타나는 Helicobacter pylori 감염에 대한 반응)

  • Bak, Eun-Jung;Jang, Sung-Il;Choi, Yun-Hui;Kim, Jin-Moon;Kim, Ae-Ryun;Kim, Ji-Hye;Woo, Gye-Hyeong;Yoo, Yun-Jung;Lee, Sung-Haeng;Cha, Jeong-Heon
    • Korean Journal of Microbiology
    • /
    • v.48 no.2
    • /
    • pp.109-115
    • /
    • 2012
  • Helicobacter pylori is an important factor of chronic gastritis, digestive ulcer, and stomach cancer. CagL, a virulence factor of H. pylori, is well-known as a pilus protein which acts as adhesion to host cell and a component of Type 4 secretion system. In this study, we evaluated the protective response of recombinant CagL protein (rCagL) using Mongolian gerbil animal model for H. pylori infection. The cagL gene was cloned from 26695 H. pylori followed by over-expression and purification of the protein in E. coli. Mongolian gerbils were immunized with rCagL protein mixed with aluminum adjuvant via intramuscular injections once a week during 4 weeks. At a week after the last immunization, the Mongolian gerbils were administrated with H. pylori 7.13 strain into the stomach and sacrificed to measure antibody titer on rCagL by ELISA and bacterial colonization in the stomach, and to examine the histopathological changes and cytokine expression at 6 week after challenge. Antibody titers on recombinant protein were significantly increased from a week after the first immunization. There was no significant change of the number of bacterial colony between control group and immunized group. The relative stomach weight was significantly decreased in immunized group, but the significant change of histopathological assessment was not observed in the stomach. Cytokine expression such as IL-$1{\beta}$ and KC also was not significantly different between control and immunized groups. These results indicate that rCagL could effectively induce the formation of the specific IgG antibodies. However, bacterial colonization and histopathological lesions could not be inhibited by the immunization in the stomach, indicating not enough protection against H. pylori infection. We consider that along with CagL other adequate antigens could be needed stimulating immune response and inducing protective effects against gastric disease, and also a better adjuvant could be considered.

Complementary DNA Cloning and nucleotide Sequence Analysis of Coat Protein Gene from TMV Pepper Strain (고추에서 분리된 담배 모자이크 바이러스 외피단백질 유전자의 cDNA 클로닝 및 염기서열 분석)

  • 이영기;이청호;강신웅;박은경
    • Korean Journal Plant Pathology
    • /
    • v.12 no.2
    • /
    • pp.182-186
    • /
    • 1996
  • 국내에서 재배되고 있는 고추(Capsicum annuum L.)로부터 분리된 TMV pepper 계통을 density gradient centrifugation을 이용하여 순화하였다. 이로부터 바이러스의 total RNA를 분리하였고 RT-PCR에 의하여 TMV pepper 계통의 외피단백질 cDNA를 합성, 증폭하였으며 이를 pBluescript II SK- 벡터에 재조합하였다. 본 실험에서 바이러스 외피단백질과 3` non-coding region을 포함하는 재조합 클론 p1561과 p1562로부터 염기서열을 분석하였고 그 결과로 477 염기의 외피단백질 유전자를 포함하는 691 염기가 합성되었음을 확인하였으며 이것과 TMV common 계통으로부터 합성된 외피단백질 cDNA와의 최대 유사도는 69%였다. 또한 유추된 아미노산 서열에서 이들 두 계통간의 최대 유사도는 81%였다.

  • PDF

Protective Antibodies and Immunity elicited by Immunization with Outer Membrane Protein H of Pasteurella multocida in Mice (Pasteurella multocida의 외막 단백질 H에 의해 유도되는 방어적 항체와 면역)

  • Kwon, Moo-Sik;Kim, Young-Bong;Lee, Jeong-Min
    • Korean Journal of Microbiology
    • /
    • v.43 no.1
    • /
    • pp.7-13
    • /
    • 2007
  • Pasteurella multocida is one of the important animal pathogen causing widespread infections in various domestic animals. In swine, it causes severe respiratory diseases such as atrophic rhinitis and pneumonic pasteurellosis. To develop the efficient subunit vaccine against swine atrophic rhinitis, we investigated protective antibodies and humoral immunity of outer membrane protein H (OmpH) which is one of the major outer membrane proteins in P. multocida. Outer membrane fraction of P. multocida was immunologically detectable using antisera from both mice groups vaccinated by formalin-killed whole cells and by commercial vaccine. The expression vector for production of recombinant OmpH was constructed and the recombinant OmpH was expressed and purified from E. coli. Recombinant OmpH showed high antigenic and immunogenic properties in mice vaccination and ELISA with antisera.