DOI QR코드

DOI QR Code

Production and Characterization of Monoclonal Antibodies Specific to PAT Protein Expressed in Genetically Modified Herbicide-Resistance Maize

제초제 내성 유전자 변형 옥수수 중 PAT단백질에 특이한 단크론성 항체의 생산과 특성 확인

  • Kim, Sol-A (Division of Applied Life Science, Graduate School, Gyeongsang National University) ;
  • Lee, Jeong-Eun (Division of Applied Life Science, Graduate School, Gyeongsang National University) ;
  • Shim, Won-Bo (Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University) ;
  • Kang, Sung-Jo (MADI-LAB, Inc.) ;
  • Chung, Duck-Hwa (Department of Agricultural Chemistry and Food Science & Technology, Gyeongsang National University)
  • 김솔아 (경상대학교 응용생명과학부) ;
  • 이정은 (경상대학교 응용생명과학부) ;
  • 심원보 (경상대학교 농화학식품공학과) ;
  • 강성조 ((주)매디랩) ;
  • 정덕화 (경상대학교 농화학식품공학과)
  • Received : 2018.05.28
  • Accepted : 2018.06.05
  • Published : 2018.06.30

Abstract

In this study, PAT protein of genetically modified maize was prepared from the recombinant E. coli strain BL21 (DE3), and mice were immunized with the recombinant PAT protein. After cell fusion and cloning, two hybridoma cells (PATmAb-7 and PATmAb-12) were chosen since the monoclonal antibodies (Mabs) produced by them were confirmed to be specific to PAT protein in the indirect enzyme-linked immunsorbent assay (ELISA) and western blot tests. There were no cross-reactions of either Mabs to other GM proteins or to the extracts of non-GM maize. The ELISA based on the PATmAb-7 can sensitively detect 0.3 ng/g PAT protein in corn. These results indicate that the developed Mabs can be used as bio-receptors in the development of immunosensors and biosensors for the rapid and simple detection of GM corn adulterated in foods.

본 연구에서는 유전자 변형 옥수수(GM 옥수수)에 특이한 단크론성 항체를 개발하고 이에 대한 특성을 확인하는 연구를 수행하고자 하였다. 먼저 형질전환 대장균으로부터 PAT 단백질을 발현시킬 수 있는 시스템을 확립하였고, 재조합 PAT 단백질을 대량 생산하여 항원으로 사용하였다. 준비된 항원을 면역한 결과 재조합 PAT 단백질의 항원성은 매우 높은 것으로 확인되었으며, 세포융합과 클로닝을 통해 12 종의 hybridoma를 확립하였고 western blot 결과 10 종의 hybridoma가 재조합 PAT 단백질과 강한 반응성을 나타내었다. 10종의 hybridoma가 생산하는 항체가 실제 GM 옥수수에 반응하는지를 추가의 western blot으로 분석한 결과 2종의 단크론성 항체(PATmAb-7 and PATmAb-12)가 재조합 PAT 단백질뿐만 아니라 실제 GM 옥수수 중 PAT와 반응하는 것으로 확인되었다. 항체를 대량 생산하고 정제한 후 2종의 항체는 SDS-PAGE 상에서 대표적인 항체의 분리패턴(heavy와 light chain)을 나타내었고, 전형적인 $IgG_1$${\kappa}$ type으로 확인되었다. 정제된 단크론성 항체는 특성을 조사한 결과 다른 GMO에서 발현될 수 있는 재조합 단백질과 non-GM 옥수수 추출물에는 반응성이 없고 PAT 단백질에만 특이적으로 반응하는 것을 확인할 수 있었다. PATmAb-7 를 이용한 간접효소면역분석법의 검출한계는 0.3 ng/mL 수준으로 기준의 유전자변형 콩 면역분석법과 비교했을 때 높은 민감도를 나타내었다. 이상의 결과로 볼 때 개발된 2종의 항체(PATmAb-7 and PATmAb-12)는 GM 옥수수에서 발현되는 PAT 단백질에 특이적으로 반응하는 항체로 확인되었고, 2종의 항체를 이용한 면역분석법과 바이오센서의 개발 가능성을 제시할 수 있었다.

Keywords

References

  1. Bonny, S.: Genetically modied herbicide-tolerant crops, weeds, and herbicides: Overview and impact. Environ Manag., 57, 31-48 (2016). https://doi.org/10.1007/s00267-015-0589-7
  2. Chung, K.H.: Genetically Modified Organisms. Health and Welfare Forum, 64-73 (2011).
  3. Shin, W.S., Kim, M.H.: Optimized condition of genomic DNA extraction and PCR methods for GMO detection in potato. Korean J. Food Sci. Technol., 35, 591-597 (2003).
  4. Available from http://foodsafetykorea.go.kr/portal/board/board.do/, Accessed Aug. 29 (2017).
  5. Zhu, H.J., Chen, Y., Li, Y.H., Wang, J.M., Ding, J.T., Chen, X.P., Peng, Y.F.: A 90day safety assessment of genetically modified rice expressing Cry1Ab/1Ac protein using an aquatic animal model. J. Agric. Food Chem., 63, 3627-3633 (2015). https://doi.org/10.1021/jf5055547
  6. Zou, S., Huang, K., Xu, W., Luo, Y., He, X.: Safety assessment of lepidopteran insect-protected transgenic rice with cry2A gene. Transgenic Res., 25, 163-172 (2016). https://doi.org/10.1007/s11248-015-9920-6
  7. Hooftman, D.A.P., Bullock, J.M., Morley, K., Lamb, C., Hodgson, D.J., Bell, P., Thomas, J., Hails, R.S.: Seed bank dynamics govern persistence of Brassica hybrids in crop and natural habitats. Ann. Bot.,115, 1-11 (2014).
  8. Keese, P.: Risks from GMOs due to horizontal gene transfer. Environ. Biosafety Res., 7, 123-149 (2008). https://doi.org/10.1051/ebr:2008014
  9. Delaney, B., Karaman, S., Roper, J., Hoban, D., Sykes, G., Mukerji. P., Frame, S.R.: Thirteen week rodent feeding study with grain from molecular stacked trait lepidopteran and coleopteran protected (DP-OO4114-3) maize. Food Chem. Toxicol., 53, 417-427 (2013). https://doi.org/10.1016/j.fct.2012.12.002
  10. Devos, Y., De Schrijver, A., De Clercq, P., Kiss, J., Romeis, J.: Bt-maize event MON 88017 expressing Cry3Bb1 does not cause harm to non-target organisms. Transgenic Res., 21, 1191-214 (2012). https://doi.org/10.1007/s11248-012-9617-z
  11. Duke, S.O., Lydon, J., Koskinen, W.C., Moorman, T.B., Chaney, R.L., Hammerschmidt, R.: Glyphosate effects on plant mineral nutrition, crop rhizosphere microbiota, and plant disease in glyphosate-resistant. Crops. J. Agric. Food Chem., 60, 10375-10397 (2012). https://doi.org/10.1021/jf302436u
  12. Cao, S.S., Xu, W.T., Luo, Y.B., He, X.Y., Yuan, Y.F., Ran, W.J., Liang, L.X., Huang, K.L.: Metabonomics study of transgenic Bacillus thuringiensis rice (T2A-1) meal in a 90-day dietary toxicity study in rats. Mol. Bio. Syst., 7, 2304-2310 (2011).
  13. Ford, C.S., Allainguillaume, J., Fu, T.R., Mitchley, J., Wilkinson, M.J.: Assessing the value of imperfect biocontainment nationally: rapeseed in the United Kingdom as an exemplar. New Phytologist., 205, 1342-1349 (2015). https://doi.org/10.1111/nph.13131
  14. Ford, C.S., Allainguillaume, J., Grilli-Chantler, P., Cuccato, J., Allender, C.J., Wilkinson, M.J.: Spontaneous gene flow from rapeseed (Brassica napus) to wild Brassica oleracea. Proc. Biol. Sci., 273, 3111-3115 (2006). https://doi.org/10.1098/rspb.2006.3686
  15. Nilufer, D., Boyacioglu, D.: Comparative study of three different methods for the determination of aflatoxins in tahini., J. Agric. Food Chem. 50, 3375-3379 (2002). https://doi.org/10.1021/jf020005a
  16. Langone, J.J., Van Vunakis, H.: Aflatoxin B; specific antibodies and their use in radioimmunoassay. J. Natl. Cancer Inst. 56, 591-595 (1976). https://doi.org/10.1093/jnci/56.3.591
  17. Available from http://www.fao.org/fileadmin/user_upload/gmfp/docs/SYHT0H2_report.pdf/, Accessed Nov. 4 (2014).
  18. Available from https://www.foodsafetykorea.go.kr/portal/board/boardDetail.do/, Accessed Mar. 24 (2017).
  19. Laemmli, U.K.: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 15, 680-685 (1970).
  20. Shon, D.H.: Development of immunoassay system for the detection of genetically modified soybeans. Bull. Food Technol., 15, 59-69 (2002).
  21. Kohler, G., Milstein, C.: Continuous cultures of fused cells producing antibody of predefined specificity. Nature, 256, 495-501 (1975). https://doi.org/10.1038/256495a0
  22. Mckearn, T.J., Weiss, A., Stuart, F.P., Fitch, F.W.: Selective suppression of humoral and cell-mediated immune responses to rat alloantigens by monoclonal antibodies produced by hybridoma cell lines. Transplant Proc., 11, 932-935 (1979).
  23. George, C.W., Susott, R.A.: Effects of ammonium phosphate and sulphate on the pyrolysis and combustion of cellulose. USDA Forest Service INT-90 (1971).
  24. Towbin, H., Staehelin, T., Gordon, J.: Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc. Natl. Acad. Sci., 76, 4350-4354 (1979). https://doi.org/10.1073/pnas.76.9.4350
  25. Xu, W.T., Huang, K.L., Deng, A.K., Luo, Y.B.: Enzyme linked immunosorbent assay for PAT protein detection in genetically modified rape. Chinese J. Agric. Biotechnol., 3, 177-181 (2006). https://doi.org/10.1079/CJB2006106