• Title/Summary/Keyword: 재접착

Search Result 438, Processing Time 0.03 seconds

Storage of Black Rice using Flexible Packaging Materials (유연성 플라스틱 포장재를 이용한 흑미의 저장)

  • Kim, Jong-Dae;Kim, Kwan;Eun, Jong-Bang
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.158-163
    • /
    • 1999
  • The quality change of black rice during storage at $20^{\circ}C$ was measured to determine a packaging material for black rice storage, using polyethylene film (PE), polypropylene film (PP) and laminated film with PE and PP (PE/PP). Water activity of black rice was 0.642 at initial time and changed little in 8 months during storage at $20^{\circ}C$. Acidity of black rice was 25 mg KOH at initial time and was the lowest, 33.16 mg KOH, within PE/PP of 0.10 mm in thickness in 8 months during storage at $20^{\circ}C$. L, a and b values, hunter color value of black rice were not changed significantly in all packaging materials during 8 month storage. Hardness of the black rice was increased a little, but changed the smallest in PF/PP and the largest in PE with 0.05mm in thickness in 8 months. During storage, hexanal content was increased the smallest in PE/PP and the largest in 0.05 mm PE. Among fatty acid of black rice, linoleic acid was changed the smallest in PE/PP and the largest in 0.05 mm PE. In conclusion, PE/PP was better for the storage of black rice than PE and PP.

  • PDF

Evaluation of Physical Properties according to Mixing Ratio and the Survey of the Current Situation for Epoxy Resin used in Conservation (문화재 보존처리에 사용되는 에폭시수지의 사용현황과 배합비율에 따른 물성 변화 연구)

  • Lee, Eun Ji;Jang, Sung Yoon
    • Journal of Conservation Science
    • /
    • v.32 no.2
    • /
    • pp.223-234
    • /
    • 2016
  • Two-component epoxy resin is widely used in the cultural heritage restoration field. However according to mixing ratio of resin and hardener, curing property, mechanical strength and chemical structure differ which have possibility to effect the stability of cultural heritage. Result of questionnaire survey shows hands-on workers in the conservation field tend to mix the epoxy resin with his or her eye measurement when the using amount is small or mix additional hardener to shorten the pot life of epoxy resin. This research aims to analyze the curing property, mechanical strength and chemical structure of rapid curing type epoxy resin and medium curing type one depending on relative ratio of 0.25~4 of hardener to resin. When the amount of hardener was 0.5~2 times more than the resin, exothermic heat and curing speed were both increased. In case of included hardener to resin was lower than official ratio, mechanical strength (tensile shear strength, tensile strength and compressive strength) became higher along with active cross-linking bonding of the epoxy resin. Medium curing type epoxy relatively had lower exothermic heat and slower reaction during curing process. It was observed to be put to definite point of mechanical strength under lower content of hardener than official ratio. While, hardener ratio more than twice the resin slowed down the curing greatly and lowered the adhesion strength also. In conclusion, under the lower mixing rate of hardener than official ratio would show relatively fast reaction with similar mechanical strength. Over the official ratio on the other hand, material property drops rapidly. Accordingly, mixing ratio of epoxy resin is expected to be influential to the stability of cultural heritage.

The Effect of Finger Joint Location on Bending Strength Properties (핑거접합부의 위치가 휨강도성능에 미치는 영향)

  • Won, Kyung-Rok;Hong, Nam-Euy;Ryu, Hyun-Soo;Park, Han-Min;Byeon, Hee-Seop
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.4
    • /
    • pp.318-326
    • /
    • 2013
  • The effect of finger joint location and distance from joint to joint one another on 3 point mid-concentration bending strength properties was investigated in this experiment. Resorcinol-phenol formaldehyde (RPF) and aqueous vinyl urethane (AVU) was used to domestic Pinus densiflora Sieb. et Zucc and imported Picea sitchensis Carr. that have been cut to different width of 0.15 mm between finger tip and root width and the distance from loading point to finger joint was 0, 30, 40, 50, 60 mm. The effect was not found on the location and distance of finger joint for bending modulus of elasticity, while the efficiency of bending strength property increased proportionally as the location of finger joint from the load point and the distance between finger joint increased. No influence was shown by finger joint location and distance beyond 3 times of specimen thickness, since similar values were shown between the solid wood and no destruction occurred materials.

Study on the Development and Property of Epoxy Putty with Excellent Low Shrinkage and Cutting Force Using Mercaptan Type and Diamine Type (Mercaptan계와 Diamine계를 이용한 저수축·절삭력이 우수한 Epoxy Putty의 개발 및 물성에 관한 연구)

  • Oh, Seung-Jun;Wi, Koang-Chul
    • Journal of Adhesion and Interface
    • /
    • v.16 no.4
    • /
    • pp.137-145
    • /
    • 2015
  • This study aimed to develop epoxy putty as a multi-purpose connection and restoration material that can be used for material-specific restoration work such as metal, wood, ceramics, earthenware and stone artifacts by replacing synthetic resins currently being used for preservation treatment of cultural assets. Existing synthetic resins have the issue of cutting force resulting from high strength, deflection resulting from long hardening time, contaminating the surface of artifacts through staining on tools or gloves and need for re-treatment resulting from material discoloration. Accordingly, paste type restoration material most widely being used in the field of cultural assets preservation treatment was selected and examined the property to select it as an object of comparison. Based on such process, epoxy putty was developed according to the kind of agent, hardener and filler. For the purpose of solving the issues of existing material and allowing the epoxy putty developed to have similar property, property experiments were conducted by selecting agents and hardeners with different characteristics and conditions. The study findings showed that both kinds are paste type that improved work convenience and deflection issue as a result of their work time of within 5~10 minutes that are about 3~10 times shorter than that of existing material. In regards to wear rate for increasing cutting force, it improved by about 3 times, thereby allowing easy molding. For the purpose of improving the issue of surface contamination that occurs during work process, talc and micro-ballon were added as filler to reduce the issue of stickiness and staining on hand. Furthermore, a multi-purpose restoration material with low shrinkage, low discoloration and high cutting force was developed with excellent coloring, lightweight and cutting force features.

Understanding the Viscoelastic Properties and Surface Characterization of woodflour-Polypropylene Composites (목분-폴리프로필렌 복합재의 점탄성적 성질과 표면특성)

  • Son, Jungil;Gardner, Douglas J.
    • Journal of Adhesion and Interface
    • /
    • v.3 no.4
    • /
    • pp.1-9
    • /
    • 2002
  • The main goal of this study was to analyze the effect of process additives, i.e. maleated polypropylene (MAPP), and nucleating agent on the viscoelastic properties of different types of extruded polypropylene-wood plastic composites manufactured from either PP homopolymer, high crystallinity PP or PP impact copolymer using dynamic mechanical thermal analysis. And also, the esterification reaction between wood flour and maleated polypropylene, and its role in determining the mechanical properties of wood flour-polypropylene composites was investigated. The wood plastic composites were manufactured using 60% pine wood flour and 40% polypropylene on a Davis-Standard $Woodtruder^{TM}$. Dynamic mechanical thermal properties, polymer damping peaks(than ${\delta}$), storage modulus (E') and loss modulus (E") were measured using a dynamic mechanical thermal analyzer. XPS (X-ray Photoelectron Spectroscopy), also known as ESCA (Electron Spectroscopy for Chemical Analysis) study of wood flour treated with MAPP was performed to obtain information on the chemical nature of wood fiber before and after treatment. To analyze the effect of frequency on the dynamic mechanical properties of the various composites, DMA tests were performed over a temperature range of -20 to $100^{\circ}C$, at four different frequencies (1, 5, 10 and 25 Hz), and at a heating rate of $5^{\circ}C/min$. From these results, the activation energy of the various composite was measured using an Arrhenius relationship to investigate the effect of maleated PP and nucleating agent on the measurement of the interphase between the wood and plastic of the extruded polypropylene wood plastic composites.

  • PDF

Carrageenan-Based Liquid Bioadhesives for Paper and Their Physical Properties (카라기난 기반 액상형 바이오 종이 접착제의 제조 및 물성에 관한 연구)

  • Oh, Seung-Jun;Han, Won-Sik;Wi, Koang-Chul
    • Journal of Conservation Science
    • /
    • v.36 no.6
    • /
    • pp.541-548
    • /
    • 2020
  • There is a growing demand for natural materials to replace adhesives based on volatile organic compounds (VOCs). However, the exclusion of VOCs from the manufacturing process leads to difficulties in manufacturing, and reduction in productivity and preservability. In this paper, we report the manufacture of natural bioadhesives using the carrageenan component of seaweed. λ-carrageenan, isolated from the extracted total carrageenan, was used to prepare a highly stable adhesive for paper. The resulting composition was 52.0 ± 1.0% λ-carrageenan, 30.5 ± 0.5% Polyvinylpyrrolidone, 1.0 ± 0.05% ethylhexylglycerin, 1.5 ± 0.05% glycerin, 13.5 ± 0.5% dextrine, and 0.6 ± 0.05% food-grade antifoam emulsion. The viscosity was found to be 1.13 ± 0.07 × 105 cP (25℃), UV degradation occurred at pH6.22, drying rate was 15min, △b* was -10.79, and △E* ab was 8.18. The bioadhesive showed an excellent adhesion strength of 44.63 kgf/cm2. Thus this adhesive showed excellent fungal resistance and good adhesive persistence, without the presence of total volatile organic compounds (TVOC), formaldehyde (HCHO), and heavy metals.

The Study on Skin Adhesive Technology for Automotive Interior Using the Vacuum Suction Process (진공흡착공정을 이용한 자동차 내장부품의 표피재 접착기술에 관한 연구)

  • Kim, Key-Sun;Kim, Sung-Wha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.3
    • /
    • pp.1045-1050
    • /
    • 2011
  • This study proposed the new pressing method under heat for the plastic automotive interior part in order to make embossing on the skin of the raw material of the part. The raw material is laid on the lower mold and it is pressed by the upper one with embossing shape. The air is suctioned from the inside of both molds for producing tension and making embossing shapes on the skin of the part without its breakage. The corresponding molds and test machines are made and the proposed manufacturing process is validated.

Evaluation of Com-Ply from Domestic Logs and Urea-Formaldehyde Resin Adhesive (국산재와 요소수지접착제로 제조된 Com-Ply의 평가)

  • Oh, Yong-Sung;Kim, Jong-In
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.1
    • /
    • pp.54-57
    • /
    • 2007
  • Urea-formaldehyde (UF) resin was formulated similarly to plywood resin in the laboratory. The synthesized UF resin adhesive was mixed with extender, filler and acid catalyst. The mixture contained 56.1% total solids and 43.9% water. The mixes was used to bond five Com-Ply types using Korean wood species. The Com-Ply made were tested for shear strength and wood failure according to KS F 3101 ordinary plywood as well as for bending strength per KS F 3104 particleboard. The performance test results showed good strength properties for all Com-Ply types made in this study. This result represented that the UF resin adhesive mix was adequate for bonding Com-Ply with domestic wood species.

The Development of the Unfading Urethane Polymer Based on Reversible Properties for Ceramics and Restoration with This Urethane Product (가역성을 갖는 도자기 복원용 무황변 우레탄 수지의 개발과 이를 이용한 도자기의 복원)

  • Han, Won-Sik;Park, Gi-Jung;Lim, Sung-Jin;Lee, Young-Hoon;Hong, Tae-Kee;Wi, Koang-Chul
    • Journal of Conservation Science
    • /
    • v.26 no.2
    • /
    • pp.183-190
    • /
    • 2010
  • We fabricated urethane material based on properties of reversible and unfading for antic-ceramics restoration. This material with low viscosity was made hardness control possible that user want. And it have very strong adhesion and shear strength properties and is shown the best properties for pigment filling, anti-contractibility, coloring as like epoxy system materials. Particularly, the yellowing and ir-reversibility problem in epoxy restoration material were finally solved. So, there is guarantee in the eternity and stabilization of restoration for antic-celamics. And in order to show the reversible state of the restoration, we successfully dissolve this urethane materials in solvent after perfect restoring subsequently.

Properties of Polymer-Modified Mortar with Styrene-Butyl Acrylate and Styrene Butadiene Rubber (S/BA와 SBR을 혼입한 폴리머 시멘트 모르타르의 특성)

  • Mun, Kyung-Ju;Song, Hae-Ryong;Hyung, Won-Gil
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.555-560
    • /
    • 2008
  • Polymer-modified mortars have been largely used as paving materials, flooring, waterproofing material, adhesives, anticorrosive linings, deck coverings, and other various materials. The various types and properties of the mixed polymer largely affect the characteristics of polymer-modified mortar that has been mixed with polymer latexes. Consequently, its application purposes are varied according to these properties. This paper investigates the typical properties of polymer-modified mortars that contain styrene and butyl acrylate latexes and styrene butadiene rubber. They are then tested to obtain air contents, water-cement ratios, flexural and compressive strengths, water absorption, and chloride-ion penetration. From the test results, the superior flexural strength of polymer-modified mortars is obtained at a S/BA-2 and a polymer-cement ratio of 20%. And, the water absorption and chloride ion penetration depth are greatly affected by the polymer-cement ratio rather than the types of polymer. In the polymer-modified mortar and concrete structures, aggregates are bound by such a co-matrix phase, resulting in the superior properties of polymer-modified mortar and concrete compared to conventional mortar and concrete.