• Title/Summary/Keyword: 장애물 주위 유동

Search Result 10, Processing Time 0.022 seconds

The effect of incident angle on flow around a square cylinder (박리점 변동에 따른 사각 실린더 주위 유동 해석)

  • Won, Seong-Jin;Lee, Chang-Hun;Choe, Jeong-Il
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.431-436
    • /
    • 2013
  • 본 연구에서는 정사각형으로 모델링 된 실린더 주위에 균일한 유동이 흐를 때, 나타나는 이차원 층류 유동을 분석하였다. EDISON_CFD를 이용하여 각도의 변화에 따른 사각 실린더의 박리점에 의한 주위 유동 현상을 해석하였다. 격자 분해능과 시간 간격에 따른 정확성을 분석하였다. 각도의 변화에 따른 정사각 실린더의 양력계수와 항력계수를 확인하였다. 또한 한 주기의 자료값을 평균한 유동에서 박리점의 위치 변화와 주 와흘림의 길이를 분석하였다.

  • PDF

Numerical Simulation on Turbulent Shear Flows over Surface-Mounted Obstacles (표면에 부착된 장애물 주위의 난류전단유동에 관한 수치해석)

  • Myeong, Hyeon-Guk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2593-2600
    • /
    • 1996
  • A modified k-$\varepsilon$ turbulence model having a generality is proposed in the present study, in which the constant $C_{\varepsilon2}$in the $\varepsilon$-equation is simply changed as a functional form of a new parameter both satisfying the tensor invariant condition and representing the extra straining effect on complex shear flows. With this model turbulent shear flows over two-dimensional obstacles placed in a channel are numerically studied for different blockage ratios and aspect ratios. Comparing with the available experimental data, the predicted results with the present model provide definite improvements over the standard model's results and work fairly well with the experimental data on the size of the recirculation zone, as well as mean velocity, wall static pressure, turbulent kinetic energy and Reynolds stresses.

Analysis on the effect of vehicle interval on aerodynamic coefficient (차간 간격에 따른 후행차량의 공력계수 변화 분석)

  • Jeong, Yeo-Ji;Won, Seong-Jin
    • Proceeding of EDISON Challenge
    • /
    • 2014.03a
    • /
    • pp.527-532
    • /
    • 2014
  • 본 연구에서는 사각 실린더로 근사된 차체 주위에 균일한 층류 유동이 흐를 때, 앞 사각 실린더의 후면에 나타나는 후류의 변화를 정상적인 관점에서 분석하였다. EDISON_CFD를 이용하여 앞 실린더와 뒷 실린더의 변화에 따른 공력계수를 확인하였다. 격자 분해능과 시간 간격에 따른 정확성을 분석하였다. 앞 실린더의 길이 변화, 두 실린더 간의 거리를 통해 나타나는 공력계수의 변화를 실제 상황에서의 운행 안정성 및 공기 저항에 대입하여 분석하였다.

  • PDF

Large eddy simulation of turbulent flow around a wall-mounted cubic obstacle in a channel using Lagrangian dynamic SGS model (Lagrangian Dynamic Sub-grid Scale 모델에 의한 평행평판내 입방체 장애물 주위 유동에 관한 대 와동 모사)

  • Ko, Sang-Cheol;Park, Nam-Seob
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.369-375
    • /
    • 2006
  • Large eddy simulation has been applied to simulate turbulent flow around a cubic obstacle mounted on a channel surface for a Reynolds number of 40000(based on the incoming bulk velocity and the obstacle height) using a Smagorinsky model and a Lagrangian dynamic model. In order to develop the LES to the practical engineering application, the effect of upwind scheme, turbulent sub-grid scale model were investigated. The computed velocities. turbulence quantifies, separation and reattachment length were evaluated by compared with the previous experimental results.

An experimental study of a flow field generated by a rotating cylinder on a plane moving at free stream velocity (자유흐름 속도의 이동면과 맞닿은 회전실린더 주위 유동장의 실험적 해석)

  • Park, Un-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.5
    • /
    • pp.700-712
    • /
    • 1997
  • The flowfield generated by a 2-D rotating cylinder on a plane moving at freestream velocity was experimentally investigated in a wind tunnel to simulate aerodynamic characteristics of rotating wheels of an automobile. In the flowfield around a rotating cylinder at 3*10$^{3}$ < Re$_{d}$<8*10$^{3}$, unique mean flow and turbulence characteristics were confirmed by hot-wire measurements as well as frequency analysis, which was supported by flow visualization. In the vicinity of a rotating cylinder, a unique turbulence structure on .root.over bar u'$^{2}$ profiles was formed in hump-like shape at 1 < y/d < 3. A peak frequency which characterized the effect of a rotating cylinder had the same value of the rotation rate of a cylinder. In case of cylinder rotation, the depths of mean velocity -defect and turbulent-shear regions were thickened by 20-40% at 0 < x/d < 10 compared with the case of cylinder stationary. Far downstream beyond x/d > 10, the flowfield generated by a rotating cylinder showed self-similarity in the profiles of mean velocity and turbulence quantities. The effect of a rotating cylinder was independent of its rotation rate and Reynolds number in the measurement range.

Interactions between Propagating Flame Fronts and Obstacles in an Explosion Chamber with a H/L Ratio of 0.86

  • Park, Dal Jae
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.1
    • /
    • pp.13-18
    • /
    • 2013
  • Experimental studies were carried out to investigate the interactions between the propagating flame fronts and different multiple obstacles within an explosion chamber. The explosion chamber is 600 mm in height, $700{\times}700mm^2$ in cross-section and has a H/L value of 0.86. Three different multiple obstacles with the blockage ratio of 0.43 were replaced within the chamber. The results showed that relatively higher local flame displacement speed was observed with the triangular obstacle while the lower was observed with the circular one. It was found that the local flame displacement speeds behind the obstacle were largely dependent on the obstacle types. It was also found that as the flame interacted with the flow field generated behind the obstacle, the probability density functions(PDFs) of the local flame displacement speed were extensively distributed toward higher speeds.

A Study on the Operation Improvement of Door Fan Test (Door Fan Test 운영개선에 관한 연구)

  • Kong, Il-Chean;Kim, Hak-Kyung;Choi, Du-Chan;Kim, In-Tae
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2016.11a
    • /
    • pp.275-277
    • /
    • 2016
  • 본 논문에서는 Door Fan Test 수행 사례를 중심으로 사전 준비에 필요한 사항에 대해 분석하였다. 분석 결과 관통부 주위 개구부, 벽체 틈새 개구부 등 방화구역의 누설부위를 통해 약제가 누출되는 문제가 있었다. 원인으로는 전기배선 공사로 인해 내화충전된 부분을 제거하고 공사 후 다시 충전하지 않는 경우, 벽과 천장사이의 틈을 내화 실란트 등으로 마감을 하지 않은 경우가 대부분이었다. 이와 같이 누설부위가 많은 경우 테스트의 결과 불합격이 나오게 되며, 이러한 문제점을 개선하기 위해 사전현장조사를 통해 방호구역의 누설부위를 조사하고 보완조치를 진행한 후 테스트를 수행하는 절차가 필요하였다. 한편, 테스트 운영에 관한 사항으로는 해당 실(room)을 위한 충분한 유량 미확보, 장애물로 인한 와류형성, 차압측정구의 설치문제 등이 있었다. 이를 개선하기 위해서 공기를 유입하는 실은 외부로부터 충분한 공기유입이 있어야하며, 팬 앞의 장애물을 제거하거나 팬의 설치 위치를 조정하는 것이 필요하며, 공기의 유동이 가장 적은 곳에 측정구를 설치하는 등의 조치가 필요하다.

  • PDF

EVALUATION ON TURBULENT MODEL IN LARGE EDDY SIMULATION OF TUHANNEL FLOW AROUND A WALL-MOUNTED CUBE IN A CHANNEL (채널 내 부착된 입방체 장애물 주위 유동에 관한 LES 난류모델의 영향 평가)

  • Park, N.S.;Ko, S.C.
    • Journal of computational fluids engineering
    • /
    • v.13 no.3
    • /
    • pp.28-34
    • /
    • 2008
  • In engineering application of large eddy simulation, there are still questions as follows grid dependency on numerical results, the effect of upwind scheme against a calculation instability, appropriate boundary conditions dealing with turbulence fluctuation and the performance of SGS models. In this study, in order to develop the LES to the engineering application, large eddy simulation was carried out to investigate the effect of upwind scheme, turbulent subgrid model and the grid dependancy of the flow around a wall-mounted cube in a channel at Re=40,000 based on cubic height and bulk mean velocity. The computed velocities, turbulence quantities, separation and reattachment length were evaluated compared with the experimental results of R. Matinuzzi and C. Tropea.

The Effect of Bottom Gap Size of Submerged Obstacle on Downstream Flow Field (수중 장애물의 하부틈새 크기가 하류 유동장에 미치는 영향)

  • Cho, Dae-Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.4
    • /
    • pp.333-338
    • /
    • 2008
  • The coastal zone is a delicate and dynamic area in which the majority of a water kinetic energy is dissipated. These processes are subsequent to the transport of the beach materials. In comparison to emerged breakwaters, submerged structures permit the passage of some wave energy and in turn allow for circulation along the shoreline zone. This research aims to examine the beach erosion prevention capability of submerged structure by laboratory model. The flow characteristics behind a submerged obstacle with bottom gap were experimentally investigated at Re = $1.2{\times}10^4$ using the two-frame PIV(CACTUS 2000) system. Streamline curvature field behind the obstacle has been obtained by using the data of time-averaged mean velocity information. And the large eddy structure in the separated shear layer seems to have signification influence on the development of the separated shear layer. As bottom gap size increases, the recirculation occurring behind the obstacle moves toward downstream and its strength is weakened.

  • PDF

NUMERICAL STUDY ON THE CHARACTERISTICS OF NON-NEWTONIAN FLUID FLOW OVER OBSTACLE (장애물 주위의 비뉴턴 유체의 유동특성에 관한 수치적 연구)

  • Kim, Hyung Min
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.61-67
    • /
    • 2014
  • Since the most of the existing non-Newtonian models are not adequate to apply to the lattmce Boltzmann method, it is a challenging task from both the theoretical and the numerical points of view. In this research the hydro-kinetic model was modified and applied to the 3-D moving sphere in the circular channel flow and the characteristics of the shear thinning effect by the HK-model was evaluated and the condition of ${\Gamma}$ in the model was suggested for the stable simulation to generate non-trivial prediction in three dimension strong shear flows. On the wall boundaries of circular channel the curved wall surface treatment with constant velocity condition was applied and the bounceback condition was applied on the sphere wall to simulate the relative motion of the sphere. The condition is adequate at the less blockage than 0.7 but It may need to apply a multi-scale concept of grid refinement at the narrow flow region. to obtain the stable numerical results.