• Title/Summary/Keyword: 장기 크리프

Search Result 108, Processing Time 0.026 seconds

A Prediction of the Long-Term Deflection of RC Beams Externally Bonded with CFRP and GFRP (CFRP와 GFRP로 외부 부착된 철근콘크리트보의 장기 처짐 예측)

  • Kim, Sung-Hu;Kim, Kwang-Soo;Han, Kyoung-Bong;Song, Seul-Ki;Park, Sun-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.6
    • /
    • pp.765-772
    • /
    • 2008
  • For RC structures, long-term deformation occurs due to the inherent characteristics, which are creep and shrinkage. In terms of serviceability, it is important to limit deflection caused by the deformation to the allowable deflection. In the recent years, various repair and strengthening methods have been used to improve performance of the existing RC structures. One of the typical methods is FRP externally bonded method (EBR). Fiber reinforced polymer (FRP) has been used worldwide as repair and strengthening materials due to its superior properties. Besides, it has to offer improved strengthening performance not only under instantaneous load but sustained load. Therefore, accurate prediction method of deflection for the RC members externally bonded with FRP under sustained load is required. In this paper, three beams were fabricated. Two beams were externally strengthened with one of CFRP plate and GFRP plate respectively. Total three beams were superimposed under sustained load of 25 kN. During 470 days, deflections at midspan were obtained. Moreover, creep coefficients and shrinkage strains were calculated by using ACI-209 code and CEB-FIP code. In order to predict the deflection of the beams, EMM, AEMM, Branson's method and Mayer's method were used. Through the experiment, it was found that the specimen with CFRP plate has the most flexural capacity and Mayer's method is the most precise method to predict total long-term deflections.

A Study on the Properties of Shrinkage and Creep Deformation in Superplasticized Concrete (유동화 콘크리트의 건조수축 및 크리프 변형특성에 관한 연구)

  • 박승범;임창덕
    • Computational Structural Engineering
    • /
    • v.1 no.2
    • /
    • pp.131-142
    • /
    • 1988
  • This study was carried out to investigate the long-term deformation of superplasticized concrete. Compressive strength, shrinkage, creep and creep recovery of concretes with and without the superplasticizing admixture have been compared for one year. The test results on creep of superplasticized concrete were also compared with three methods of predicting creep; the ACI model, the CEB model and the BP model. According to test results, superplasticized concrete has good results in compressive strength at an age of 28 days of more than 22%, drying-shrinkage cured at air-conditioned storage less than 15%, creep deformation in air conditioned storage and loaded at an age of 28 days to 15% of compressive strength less than 11% of control concrete.

  • PDF

Sensitivity Analysis of Generalized Parameters on Concrete Creep Effects of Composite Section (합성단면의 콘크리트 크리프 효과에 대한 일반화 매개변수의 민감도 분석)

  • Yon, Jung-Heum;Kim, Eui-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.5
    • /
    • pp.629-638
    • /
    • 2009
  • In this paper, the existing formulas of the step-by-step method were generalized for effective estimation of responses of complicated composite sections due to long-term deformation of concrete. The initial transformed section properties of the composite section were derived from material and section properties of concrete section and sections which confine the longterm deformation of concrete. The transformed section properties at each step were derived from the effective modulus of elasticity considered the creep coefficient variation. Improved formulas of the step-by-step method for generalized responses were derived by introducing 5 generalized parameters. The formulas can be more simplified by applying constant increment of creep coefficient at each step. The constant increment of creep coefficient at each step can also reduce computing time and make equal computing error of each step. The generalized responses for axial elastic strain of concrete section were most sensitive to the area rate of concrete section, and the ratio of the second moment of the confining section area was more sensitive than that of the concrete section. Those for elastic curvature of concrete section were most sensitive to the ratio of the second moment of concrete section area.

Case Studies on the Experiments for Long-Term Shear Behavior of Rock Discontinuities (암반 내 불연속면의 장기 전단 거동 평가를 위한 고찰)

  • Juhyi Yim;Saeha Kwon;Seungbeom Choi;Taehyun Kim;Ki-Bok Min
    • Tunnel and Underground Space
    • /
    • v.33 no.1
    • /
    • pp.10-28
    • /
    • 2023
  • Long-term shear behavior of the rock discontinuities should be analyzed and its stability should be evaluated to ensure the long-term stability of a high-level radioactive waste disposal repository. The long-term shear behavior of the discontinuities can be modeled with creep and RSF models. The shear creep test, velocity step test, and slide-hold-slide test can be performed to determine their model parameters or analyze the shear behavior by experiments under various conditions. Testing apparatuses for direct shear, triaxial compression, and biaxial shear were mainly used and improved to reproduce the thermo-hydro-mechanical conditions of local bedrock, and it was confirmed that the shear behavior could vary. In order to design a high-level radioactive waste disposal site in Korea, the long-term behavior of rock discontinuities should be investigated in consideration of rock types, thermo-hydro-mechanical conditions, metamorphism, and restoration of shear resistance.

Analysis of Long-Term Deformation Behaviors of Geocomposites for Reinforcement (보강용 지오컴포지트의 장기변형거동 해석)

  • Jeon, Han Yong;Heo, Dai Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.2
    • /
    • pp.39-45
    • /
    • 2004
  • Geocomposite mechanically bonded with woven type geotextile and nonwoven geotextile was used to examine to the long-term creep deformation behaviors by the SIM(Stepped Isothermal Method). The temperature steps were $26^{\circ}C$, $40^{\circ}C$, $54^{\circ}C$, $68^{\circ}C$, $82^{\circ}C$ and loading levels were 40%, 50%, 60% of designed strength for stepped isothermal method. Results of creep tests are showing that their strain were lower than 10% during 10,000 hours(GRI GS 10). Also, the effect of weft injection density to the creep deformation behaviors were examined. The weft densities of 0%, 50%, 100% of the original weft density showed the creep strain within 10% and the creep strain was increased with the decrease of weft injection density.

  • PDF

Uncertainty Analysis of Long-Term Behavior of Reinforced Concrete Members Under Axial Load (축력을 받는 철근콘크리트조 부재 장기거동 예측의 불확실성 분석)

  • Yoo, Jae-Wook;Kim, Seung-Nam;Yu, Eun-Jong;Ha, Tae-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.343-350
    • /
    • 2014
  • A probabilistic construction stage analysis using the Monte Carlo Simulation was performed to address the effects of uncertainty regarding the material properties, environmental factors, and applied forces. In the previous research, creep and shrinkage were assumed to be completely independent random variables. However, because of the common influencing factors in the material models for the creep and shrinkage estimation, strong correlation between creep and shrinkage can be presumed. In this paper, an Monte Carlo Simulation using CEB-FIB creep and shrinkage equations were performed to actually evaluate the correlation coefficient between two phenomena, and then another Monte Carlo Simulation to evaluate the statistical properties of axial strain affected by partially correlated random variables including the material properties, environmental factors, and applied forces. The results of Monte Carlo Simulation were compared with measured strains of a column on a first story in a 58-story building. Comparison indicated that the variation due to the uncertainty related with the material properties were most severe. And measured strains was within the range of mean+standard deviation.

Adjustment of Creep Coefficient Using Sensitivity Analysis (민감도 해석을 통한 크리프 계수 오차 보정)

  • Park, Jong-Bum;Park, Bong-Sik;Chang, Sung-Pil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.293-296
    • /
    • 2008
  • Creep and shrinkage in concrete structures are very complex phenomena in which various uncertainties exist with regard to inherent material variations as well as modeling uncertainties. The creep and shrinkage models which are capable of predicting long-term structural response are specified in design codes such as ACI 209-92, CEB-FIP Model Code 90, etc. However, in the prediction formulas of creep and shrinkage effects of concrete, various kinds of parameters are involved to express the characteristics of concrete under consideration (i.e. the proportion of concrete, the shape of the structure, relative humidity, etc.). And the predicted values from each design code under same environment differ from each other. To predict the characteristics of concrete, the long-term experiments of creep and shrinkage is necessary but this is not suitable for a construction field. In this study, adjustment method of creep coefficient using sensitivity analysis is proposed to predict creep coefficient of concrete exactly and it is checked up on the validity of the predicting method by comparing to the assumed value and predicted one.

  • PDF

Experimental Study on Long-Term Performance Evaluation of Geosynthetic Strip Reinforcement (띠형 섬유보강재의 장기성능 평가를 위한 실험적 연구)

  • Lee, Kwang-Wu;Kim, Ju-Hyeung;Cho, Sam-Deok;Han, Jung-Geun;Yoon, Won-Il;Hong, Ki-Kwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.4
    • /
    • pp.75-84
    • /
    • 2010
  • In this study, the long-term performance tests, which have extensibility, creep deformation, installation resistance and durability characteristic, is conducted to apply geosynthetic strip in field. The strength reduction factors using the test results are evaluated in order to calculate long-term design tensile strength. First, the creep deformation was evaluated by both the stepped isothermal method(SIM) and the time-temperature superposition(TTS) method. The creep reduction factor is reasonable to apply 1.6. Second, the result of installation damage test had little damage of yarn, which affected strength of reinforcement. Therefore, it can be analyzed that the installation damage of geosynthetic strip has little effect of long-term design tensile strength. Finally, the durability reduction factor considering chemical, biological and outdoor exposure resistance is reasonable to apply 1.1, which is considered the stability and economic efficiency of reinforced earth wall using geosynthetic strip.

  • PDF

Construction Monitoring Methods of FCM Bridge Using Temperature Data (온도데이터를 활용한 현장타설 캔틸레버 교량의 시공 중 계측)

  • Kim, Hyun-Joong;Moon, Dae Joong;Nam, Soon Sung;Jeong, Ju Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.219-227
    • /
    • 2016
  • In this study, we have proposed a method of monitoring of bridges under construction in view of the long-term behavior of the prestress concrete bridge of which the Free Cantilever Method is applied. As a method to confirm the ability of the long-term behavior of the concrete box girder, temperature sensors and strain gauges were installed, and the measured data was used to calculate creep coefficient. Moreover, we have measured the stress of the concrete box girder during construction which was applied with creep coefficient and compared with the changes in temperature to analyze the vertical displacement along the segment. In conclusion, monitoring of the FCM bridge during construction in consideration of the long-term behavior can be analyzed efficiently by suing temperature and displacement data without the use of laser displacement meter or laser delfectometer.