• Title/Summary/Keyword: 잡음 강도

Search Result 306, Processing Time 0.041 seconds

Intelligent Recognition System of Car License Plate (지능형 차량 번호판 인식 시스템)

  • Kang, Moo-Jiin;Kang, Hye-Min;Woo, Young-Woon;Kim, Kwang-Baek
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.337-342
    • /
    • 2008
  • 최근 들어 기존의 녹색 바탕 차량 번호판에서, 흰색 바탕의 신 차량 번호판으로 교체되고 있다. 하지만 아직 기존 차량 번호판이 신 차량 번호판으로 전면 교체되지 않아 두 번호판 모두 사용되고 있다. 따라서 주차관리 시스템, 속도위반, 신호 위반 등 무인 카메라를 이용한 시스템에서, 기존 차량 번호판과 신 차량 번호판의 특징에 맞는 인식 시스템이 요구된다. 본 논문에서는 이러한 문제를 해결하기 위해 기존 차량 번호판과 신 차량 번호판을 통합한, 지능형 차량 번호판 인식 시스템을 제안한다. 무인 카메라에서 획득된 차량 영상에서 번호판의 색상 정보를 이용하여 기존 차량 번호판과 신 차량 번호판을 구분한다. 기존 차량 번호판인 경우에는 HSI 컬러 공간을 이용하여 이진화를 적용하며, 신 차량 번호판인 경우에는 블록 이진화를 적용한다. 이진화된 영상을 대상으로 차량의 형태학적 특징을 이용하여 잡음을 제거한 후, 차량 번호판 영역을 추출한다. 추출된 차량 번호판 영역에 대해 Labeling 알고리즘을 적용하여 개별 문자를 추출한다. 추출된 개별 문자는 FCM 알고리즘을 적용하여 인식한다. 제안된 차량 번호판 추출 및 인식 방법의 성능을 평가하기 위해 160장의 기존 차량 영상과 100장의 신 차량 영상을 대상으로 실험한 결과, 제안된 차량 번호판 추출 및 인식 방법이 실험을 통해서 효율적인 것을 확인하였다.

  • PDF

Noise-tolerant Image Restoration with Similarity-learned Fuzzy Association Memory

  • Park, Choong Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.51-55
    • /
    • 2020
  • In this paper, an improved FAM is proposed by adopting similarity learning in the existing FAM (Fuzzy Associative Memory) used in image restoration. Image restoration refers to the recovery of the latent clean image from its noise-corrupted version. In serious application like face recognition, this process should be noise-tolerant, robust, fast, and scalable. The existing FAM is a simple single layered neural network that can be applied to this domain with its robust fuzzy control but has low capacity problem in real world applications. That similarity measure is implied to the connection strength of the FAM structure to minimize the root mean square error between the recovered and the original image. The efficacy of the proposed algorithm is verified with significant low error magnitude from random noise in our experiment.

A Chaos Characteristic Analysis of Nonlinear Rainfall-Runoff Data (비선형 강우-유출량 자료에 대한 카오스 특성 분석)

  • Park, Sung-Chun;Jin, Young-Hoon;Oh, Chang-Ryol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.614-618
    • /
    • 2005
  • 수문시계열 분석과 예측은 대부분 ARMA(AutoRegressive Moving Average) 형태의 선형적인 추계학적인 모형을 이용하였으나 자현현상이 복잡해지고 비선형적인 특성을 가짐에 따라 선형적인 해석은 수문시계열의 분석과 예측에 있어서 많은 오류를 내포하고 있다. 이와 같은 문제를 해결하기 위한 시도로 Chaos이론이란 개념이 사용되기 시작하였으며, 수자원분야에서는 1980년대 후반부터 물수지 방정식 및 강우유출에 대한 카오스적 특성분석 등 많은 연구가 진행되었다. 본 연구에서는 영산강유역의 본류를 대표하는 나주지점을 대상으로 2003년 1월 1일 00시부터 2004년 12월 31일 23시까지 17,544개의 시수위 자료에 대하여 해당 년도의 Rating-Curve식을 적용 환산한 유출량자료에 데한 카오스적 특성을 분석하였다. 카오스적 특성을 분석하기에 앞서 원자료에 대하여 이동평균법과 Savitzky-Golay Filter를 적용하여 잡음을 제거하였으며, 1차원의 단일변량의 자료에 대한 상태공간(Phase Space)의 재건을 통하여 비교검토 하였다. 이러한 일련의 과정을 거친 자료에 대하여 상관차원법을 이용하여 영산강 유역의 나주지점의 시유출량 자료에 대한 카오스적 특성을 분석한 결과 저차원의 수렴으로 카오스 특성을 가졌다.

  • PDF

Calculation of Radiative Electric Field Intensity of Overhead Medium-Voltage Power lines for Power Line Communication (전력선통신을 위한 고압 배전선로의 방사전계강도 계산)

  • Chun Dong-wan;Park Young-jin;Kim Kwan-ho;Shin Chull-chai
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.12A
    • /
    • pp.1136-1146
    • /
    • 2005
  • In this paper, the radiative electric field intensity due to the communication signal and conductive noise is calculated in overhead medium voltage power lines for power line communication. The input impedance is calculated by means of 2 port equivalent model of medium voltage power line network and basic transmission line theory. And then, currents is calculated by calculated input impedance and finally, the emissive electric field is calculated. The input impedance appears like a standing wave form with a fixed cycle because high reflection at the input terminal due to the characteristic impedance of medium voltage power line is very large. A calculated current and radiative electric field also appears like this form. From the measurement results, the measured results are very similar to the calculated results.

Effective Watermark Detection Using Asymmetric Thresholds (비대칭 임계치를 이용한 효과적인 워터마크 검출 방법)

  • Shin, Chang-Doon;Oh, Hae-Seok
    • The KIPS Transactions:PartB
    • /
    • v.10B no.6
    • /
    • pp.619-628
    • /
    • 2003
  • In this paper, an effective watermark detection technique in the wavelet transform domain is proposed. In this proposed method, the image is 2-level wavelet transformed, and then the watermark with a binary logo is embedded into middle band except baseband and high band to consider Invisibility and robustness. In this paper, we use an asymmetric thresholds watermarking (ATW) in which detection threshold is higher than inserting threshold in order to enhance watermark detection ratio in attacked images. In watermark detection phase, the detection value is not changed when the difference of the selected wavelet neighboring coefficient pairs Is smaller than specific value. The experimental results show that the proposed method has good quality and is robust to various attacks such as the JPEG lossy compression, noise addition, cropping, blurring, etc.

A Study of Improving LDP Code Using Edge Directional Information (에지 방향 정보를 이용한 LDP 코드 개선에 관한 연구)

  • Lee, Tae Hwan;Cho, Young Tak;Ahn, Yong Hak;Chae, Ok Sam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.7
    • /
    • pp.86-92
    • /
    • 2015
  • This study proposes new LDP code to improve facial expression recognition rate by including local directional number(LDN), edge magnitudes and differences of neighborhood edge intensity. LDP is less sensitive on the change of intensity and stronger about noise than LBP. But LDP is difficult to express the smooth area without changing of intensity and if background image has the similar pattern with a face, the facial expression recognition rate of LDP is low. Therefore, we make the LDP code has the local directional number and the edge strength and experiment the facial expression recognition rate of changed LDP code.

A Study on Robust Feature Vector Extraction for Fault Detection and Classification of Induction Motor in Noise Circumstance (잡음 환경에서의 유도 전동기 고장 검출 및 분류를 위한 강인한 특징 벡터 추출에 관한 연구)

  • Hwang, Chul-Hee;Kang, Myeong-Su;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.12
    • /
    • pp.187-196
    • /
    • 2011
  • Induction motors play a vital role in aeronautical and automotive industries so that many researchers have studied on developing a fault detection and classification system of an induction motor to minimize economical damage caused by its fault. With this reason, this paper extracts robust feature vectors from the normal/abnormal vibration signals of the induction motor in noise circumstance: partial autocorrelation (PARCOR) coefficient, log spectrum powers (LSP), cepstrum coefficients mean (CCM), and mel-frequency cepstrum coefficient (MFCC). Then, we classified different types of faults of the induction motor by using the extracted feature vectors as inputs of a neural network. To find optimal feature vectors, this paper evaluated classification performance with 2 to 20 different feature vectors. Experimental results showed that five to six features were good enough to give almost 100% classification accuracy except features by CCM. Furthermore, we considered that vibration signals could include noise components caused by surroundings. Thus, we added white Gaussian noise to original vibration signals, and then evaluated classification performance. The evaluation results yielded that LSP was the most robust in noise circumstance, then PARCOR and MFCC followed by LSP, respectively.

Study on the Method for Data Interpolation using the Correlation among Runoff, Water Quality Concentration and Load (유출량, 수질 농도 및 부하량의 상호관계를 이용한 자료보간 방법에 관한 연구)

  • Oh, Chang-Ryeol;Jung, Woo-Cheol;Jin, Young-Hoon;Park, Sung-Chun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.1474-1478
    • /
    • 2007
  • 수문 및 수질자료는 일정한 기준에 의한 관측치를 시계열 자료로 기록하거나 전송할 때 다양한 형태의 오차가 발생하게 되며 또한 수문 및 수질자료를 관측하는 측정기기의 고장과 유지관리 등의 어려움으로 다양한 형태의 결측 자료가 발생하고 있다. 이와 더불어 수문 및 수질자료는 시공간적 변동성이 크며 비선형성이 강한 특성을 갖고 있다. 이러한 수문 및 수질 자료를 이용하여 모형을 구축할 경우 다양한 형태의 잡음에 대한 검증 및 잡음저감이 필수적 요건이라 할 수 있다. 따라서 본 연구에서는 영산강 유역의 본류부를 대표하는 나주지점에 대한 유출량과 총유기탄소(TOC) 농도 및 TOC 부하량 예측모형을 개발하였으며, 이를 위한 방법으로는 잡음저감을 위하여 웨이블렛 변환과 인공신경망을 적용하였다. TOC 부하량 자료는 유출량과 TOC 자료간의 함수로서 표현이 가능함에 따라 유출량 및 TOC 자료가 결측되었을 경우 역함수에 의한 계산으로 결측 자료에 대한 보간이 가능하다. 따라서 본 연구의 주안점은 잠음 저감 및 인공신경망에 의해 최적화된 예측 모형이 결측된 유출량과 TOC 자료에 대한 역함수로 정도있는 유출량과 TOC 자료 생성 가능성을 검토하고자 한다. 본 연구의 적용 결과, 유출량 자료가 결측되었을 경우 TOC 및 TOC 부하량 예측으로 유출량 자료에 대한 간접추정 및 결측 자료에 대한 보간의 정도를 평가한 결과 $R^2$는 0.99 이상의 값을 보였다. 또한, TOC 자료가 결측되었을 경우 역시 $R^2$는 비교적 우수한 0.97 이상의 값을 보였다. 따라서 본 연구에서 개발한 유출량 및 TOC, TOC 부하량 예측모형의 개발은 정도있는 유출량 및 TOC 수질 자료의 생성이 가능할 것으로 기대된다.한 물순환 해석을 할 수 있는 기반을 확보 하였으며, 가용한 장 단기간의 관측자료와 물수지 분석 연산식의 추정치를 바탕으로 관측자료에 의한 물수지 분석을 수행하였다. 분석 결과로 산지 소하천 유역인 설마천 시험유역의 각 수문요소의 물이동간의 정량적인 값을 알 수가 있었으며, 앞으로 추가적이고 지속적인 수문모니터링이 운영되고 물순환 해석 모형에 의한 검증이 수행된다면 정량적인 물순환 관계를 규명할 수 있을 뿐만 아니라 이와 관련된 수문요소기술을 확보할 수 있을 것이다.절한 타협과 조정을 필요로 한다. 그러나 절제의 한계를 넘어선다고 생각되거나, 조정의 노력이 불가능하거나, 실패했을 때 폭력적인 행동으로 나타나게 된다. 리차즈(I.A Richards)는 분노와 공포는 일단 겉잡을 수 없는 경향이 있다고 하면서 오늘날 폭력에 대한 요구가 일상의 정서 생활에 있어, 억압을 통한, 빈곤함을 반영하고 있지 않은지 생각해봐야 할 것이라고 충고한다. 조성 가이드라인(안)을 제시하였다.EX>$\ulcorner$세종실록$\lrcorner$(世宗實錄) $\ulcorner$지리지$\lrcorner$(地理志)와의 비교를 해보면 상 중 하품의 통합 9개소가 삭제되어 있고, $\ulcorner$동국여지승람$\lrcorner$(東國與地勝覽) 에서는 자기소와 도기소의 위치가 완전히 삭제되어 있다. 이러한 현상은 첫째, 15세기 중엽 경제적 태평과 함께 백자의 수요 생산이 증가하자 군신의 변별(辨別)과 사치를 이유로 강력하게 규제하여 백자의 확대와 발전에 걸림돌이 되었다. 둘째, 동기(銅器)의 대체품으로 자기를 만들어 충당해야할 강제성 당위성 상실로 인한 자기수요 감

  • PDF

A Study on the Detection Range of Acoustic Instruments for Fisheries (수산음향계측장치의 탐지범위에 대한 연구)

  • Park, Ju-Sam
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.41 no.1
    • /
    • pp.54-63
    • /
    • 2005
  • Detection ranges of acoustic instruments mainly used for fisheries and their research are derived as the range bordered by a certain signal-to-noise ration (SNR) thershold. The SNR is depicted by several factors on transmitting and receiving, sound propagation, scattering by objects, and mainly self-ship noise. The detection ranges are shown for several fisheries instrument, such as echo sounder, quantiative echo sounder, and bio-telemetry system. The results can be used for designing the instruments, examining the capability of user's own instruments, and interpreting obtained data or echograms. Increasing transmitting power is not as effective for high frequencies as for low frequencies to increase the detection range. Comparison of volume backscattering strengths obtained by the quantitative echo sounder at several frequencies should be done within the same detection range. By applying the concept of the detection range for the bio-telemetry receiver beams, the number of the beams and the beamwidths can be determined.

Edge detection method using unbalanced mutation operator in noise image (잡음 영상에서 불균등 돌연변이 연산자를 이용한 효율적 에지 검출)

  • Kim, Su-Jung;Lim, Hee-Kyoung;Seo, Yo-Han;Jung, Chai-Yeoung
    • The KIPS Transactions:PartB
    • /
    • v.9B no.5
    • /
    • pp.673-680
    • /
    • 2002
  • This paper proposes a method for detecting edge using an evolutionary programming and a momentum back-propagation algorithm. The evolutionary programming does not perform crossover operation as to consider reduction of capability of algorithm and calculation cost, but uses selection operator and mutation operator. The momentum back-propagation algorithm uses assistant to weight of learning step when weight is changed at learning step. Because learning rate o is settled as less in last back-propagation algorithm the momentum back-propagation algorithm discard the problem that learning is slow as relative reduction because change rate of weight at each learning step. The method using EP-MBP is batter than GA-BP method in both learning time and detection rate and showed the decreasing learning time and effective edge detection, in consequence.